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Introduction

Introduction

Here follows a collection of examples of how one can solve linear differential equations with polynomial
coefficients by the method of power series. The reader is also referred to Calculus 3b, to Calculus 3c-3,
and to Complex Functions.

It should no longer be necessary rigourously to use the ADIC-model, described in Calculus 1c and
Calculus 2c, because we now assume that the reader can do this himself.

Even if I have tried to be careful about this text, it is impossible to avoid errors, in particular in the
first edition. It is my hope that the reader will show some understanding of my situation.

Leif Mejlbro
16th May 2008
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1 Solution of differential equations by the power series method

Example 1.1 1) Find the radius of convergence � for the power series

(1)
∞∑

p=1

p · x2p−1.

2) Find the sum function f(x) for (1), when x ∈ ] − �, �[, e.g. by termwise integration of (1).

3) Prove that if y =
∑∞

n=0 anxn is a power series solution of the differential equation

(2) (x2 − 1)
d2y

dx2
+ 6x

dy

dx
+ 4y = 0,

then we have the recursion formula

an+2 =
n + 4
n + 2

an, n ∈ N0.

4) Find the solution y = ϕ(x), x ∈ I, of (2), for which ϕ(0) = 1 and ϕ′(0) = 0.

1) We get by the criterion of roots x �= 0 that

p

√
|ap(x)| = p

√
p · x2 · 1

p
√|x| → x2 for p → ∞.

From the condition of convergence x2 < 1 follows that � = 1.

2) If we put

f(x) =
∞∑

p=1

px2p−1, for |x| < 1,

then

F (x) =
∫ x

0

f(t) dt =
1
2

∞∑
p=1

x2p =
1
2
· x2

1 − x2
=

1
2
· 1
1 − x2

− 1
2
,

hence by differentiation,

f(x) = F ′(x) =
1
2
· 2x
(1 − x2)2

=
x

(1 − x2)2
, for |x| < 1.

3) If we put

y =
∞∑

n=0

anxn, y′ =
∞∑

n=1

nanxn−1, y′′ =
∞∑

n=2

n(n − 1)anxn−2,

Solution of differential equations by the power series method
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(formal standard series), then we get by insertion into the differential equation,

0 = (x2 − 1)y′′ + 6xy′ + 4y

=
∞∑

n=2
(n=0)

n(n−1)anxn−
∞∑

n=2

n(n−1)anxn−2+
∞∑

n=2
(n=0)

6nanxn+
∞∑

n=0

4anxn

=
∞∑

n=0

(n2 − n + 6n + 4)anxn −
∞∑

n=0

(n + 2)(n + 1)an+2x
n

=
∞∑

n=0

(n + 1)(n + 4)anxn −
∞∑

n=0

(n + 1)(n + 2)an+2x
n

=
∞∑

n=0

(n + 1) {(n + 4)an − (n + 2)an+2}xn.

It follows from the identity theorem that

(n + 1){(n + 4)an − (n + 2)an+2} = 0 for n ∈ N0,

thus for every n in the summation domain. Since n + 1 �= 0 for n ∈ N0, we get

(n + 4)an = (n + 2)an+2 for n ∈ N0,

Solution of differential equations by the power series method
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which is fulfilled if and only if just one of the following two formulæ is satisfied

an+2 =
n + 4
n + 2

an, or
an+2

n + 4
=

an

n + 2
, for n ∈ N0.

Remark 1.1 In the text, only the former one is required. Note that the latter one is easier to
treat. In fact, if we put bn =

an

n + 2
, then it is written

bn+2 = bn, n ∈ N0, where bn =
an

n + 2
. ♦

4) If ϕ(0) = 1 and ϕ′(0) = 0, then a0 = 1 and a1 = 0, hence b0 =
1
2

and b1 = 0. It follows from
the recursion formula for bn that b2n+1 = 0, and thus a2n+1 = 0 for every n ∈ N0. Furthermore,

b2n = b2n−2 = · · · = b0 =
1
2
, hence

a2n = (2n + 2)b2n = n + 1, for n ∈ N0.

If x �= 0, then we get by (1) that the power series solution (where � = 1) is given by

ϕ(x) =
∞∑

n=0

a2nx2n =
∞∑

n=0

(n + 1)x2n =
∞∑

p=1

px2p−2 =
1
x
· x

(1 − x2)2
=

1
(1 − x2)2

.

By insertion into the differential equation we see that this is a solution

ϕ(x) =
1

(1 − x2)2
for x ∈ ] − 1, 1[.

Remark 1.2 It is often worth the trouble to inspect the equation instead of immediately to start on
the method of inserting a power series into the differential equation. In the present case we e.g. get
by using the rules of differentiation for |x| < 1 that

0 = (x2 − 1)
d2y

dx2
+ 6x

dy

dx
+ 4y =

{
(x2 − 1)

d2y

dx2
+ 2x

dy

dx

}
+ 4
{

x
dy

dx
+ y

}

=
{

(x2 − 1)
d

dx

(
dy

dx

)
+

d

dx
(x2 − 1) · dy

dx

}
+ 4
{

x
dy

dx
+

dx

dx
· y
}

=
d

dx

{
(x2 − 1)

dy

dx
+ 4xy

}

=
d

dx

{
1

x2 − 1

[
(x2 − 1)2

dy

dx
+ 2 · 2x(x2 − 1)y

]}
=

d

dx

{
1

x2 − 1
d

dx

[
(x2 − 1)2y

]}
.

Then by an integration,

1
x2 − 1

d

dx

[
(x2 − 1)2y

]
= c,

thus

d

dx
[(x2 − 1)2y] = c · (x2 − 1).

Putting c = 3c2 we get by another integration,

(x2 − 1)2y = c1 + c

(
x3

3
− x

)
= c1 + c2(x3 − 3x),

Solution of differential equations by the power series method
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and the complete solution of the differential equation becomes

y =
c1

(x2 − 1)2
+ c2 · x3 − 3x

(x2 − 1)2
, |x| < 1, c1, c2 ∈ R arbitrære.

Since

dy

dx
= c1 · x · {· · · } + c2 ·

{
3x2 − 3

(x2 − 1)2
+ x(· · · )

}
,

we get

y(0) = c1 = 1 and y′(0) = −3c2 = 0,

hence c1 = 0 and c2 = 0, and the specific solution is

ϕ(x) =
1

(1 − x2)2
for x ∈ ] − 1, 1[.

Example 1.2 Prove that the differential equation

x
d2y

dx2
+ (3 − 2x2)

dy

dx
− 4xy = 0, x ∈ R,

has a simple infinity of solutions which can be written as power series from x = 0, i.e. on the form

y =
∞∑

n=0

anxn, x ∈ ] − �, �[,

where a0 ∈ R is an arbitrary constant.

Find the radius of convergence � and the sum function f(x) for a0 = 1.

1) The equation is linear of second order with polynomial coefficients. The coefficient x of d2y
dx2 is only

0 for x = 0, so the formal power series solutions either have radius of convergence � = 0 or � = ∞.

2) By insertion of

y =
∞∑

n=0

anxn, y′ =
∞∑

n=1

nanxn−1, y′′ =
∞∑

n=2

n(n−1)anxn−2,

Solution of differential equations by the power series method
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we get for |x| < � by adding some convenient zero terms,

0 =
∞∑

n=2
(n=1)

n(n − 1)anxn−1 +
∞∑

n=1

3nanxn−1( same group anxn−1, same domain n = 1, 2, . . . )

−
∞∑

n=1
(n=0)

2nanxn+1 −
∞∑

n=0

4anxn+1 (same group anxn+1, same domain n = 0, 1, . . . )

=
∞∑

n=1

n(n + 2)anxn−1 −
∞∑

n=0

2(n + 2)anxn+1 (collecting each group)

=
∞∑

n=1

n(n + 2)anxn−1 −
∞∑

n=2

2nan−2x
n−1 (adjust according to the exponent n−1,

i.e. m−1=n+1)

= 2a1 +
∞∑

n=2

n(n + 2)anxn−1 −
∞∑

n=2

2nan−2x
n−1,

where we have removed terms such that we get the same domain in both places. Summing up we
get by collecting the two series,

0 = 2a1 +
∞∑

n=2

n{(n + 2)an − 2an−2}xn−1.

3) It follows from the identity theorem that every coefficient is 0, hence

2a1 = 0, og n{(n + 2)an − 2an−2} = 0 for n ≥ 2,

because the summation domain is given by n ≥ 2.

Since n �= 0 for n ≥ 2, this is reduced to a1 = 0, and to the recursion formula

(3) (n + 2)an = 2an−2 eller an =
2

n + 2
an−2 for n ≥ 2.

4) Solution of the recursion formula.

Since we have a leap of 2 in the indices of (3), we have to consider separately the two cases, where
n is odd or even.

a) It follows from a1 = 0 and (3) that a3 = 0, a5 = 0, . . . , hence by induction, a2n+1 = 0 for every
odd index 2n + 1, n ∈ N0.

b) For even indices we start by replacing n by 2n in (3), thus

a2n =
2

2n + 2
a2n−2 =

1
n + 1

a2(n−1), n ∈ N.

We define the auxiliary sequence bn = a2n and then get the two variants of the recursion
formula (3),

(4) bn =
1

n + 1
bn−1 or (n + 1)bn = bn−1, n ∈ N.

Here we have three methods of solution:

Solution of differential equations by the power series method
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i) Induction. Since b0 is “free”, the first coefficients are

b1 =
1
2
b0, b2 =

1
3
b1 =

1
3 · 2b0, b3 =

1
4
b2 =

1
4 · 3 · 2b0.

Set up the hypothesis

bn =
1

(n + 1)!
b0, n ∈ N, (rigtig for n = 1, 2, 3).

It follows from the recursion formula that the successor becomes

bn+1 =
1

(n + 1) + 1
b(n+1)−1 =

1
n + 2

bn =
1

(n + 2)!
bn,

which is the same as the hypothesis only with n replaced by n + 1. Then the hypothesis
follows by induction.

ii) Recursion. By iteration of the recursion formula we get (note that the difference between
the denominator and the index is constantly equal to 2),

bn =
1

n + 1
bn−1 =

1
n + 1

· 1
n

bn−2 = · · ·

=
1

n + 1
· 1
n
· · · 1

2
b0 =

1
(n + 1)!

b0.

iii) Multiplication by n! �= 0 (an integrating factor) gives

(n + 1)!bn = n!bn−1 = · · · = 1!b0, dvs. bn =
1

(n + 1)!
b0.

Solution of differential equations by the power series method
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5) Insertion into to formal power series. We get in all three cases that

a2n+1 = 0 and a2n = bn =
1

(n + 1)!
a0 for n ∈ N0,

hence

y =
∞∑

n=0

anxn =
∞∑

n=0

a2nx2n =
∞∑

n=0

a0

(n + 1)!
x2n.

6) Radius of convergence. If we put bn(x) = |a0| · 1
(n + 1)!

x2n ≥ 0, we get for a0 �= 0 and x �= 0

that bn(x) > 0, hence

bn+1(x)
bn(x)

=
|a0|x2(n+1)

(n + 2)!
· (n + 1)!
|a0|x2n

=
x2

n + 2
→ 0 < 1

for n → ∞. It follows from the criterion of quotients that the series is convergent for every
x ∈ R, thus � = ∞, and the interval of convergence is R.

7) Sum function. The coefficient
1

(n + 1)!
indicates that we should think of an exponential function.

When a0 = 1 and x �= 0 we get by the change of indices n �→ n − 1 that

y =
∞∑

n=0

1
(n + 1)!

x2n =
∞∑

n=1

1
n!

x2(n−1) =
1
x2

∞∑
n=1

1
n!

x2n.

A comparison with the exponential series

exp(t) =
∞∑

n=0

1
n!

tn, t ∈ R,

shows that it would be a good idea to put t = x2,

exp(x2) =
∞∑

n=0

1
n!

x2n = 1 +
∞∑

n=1

1
n!

x2n.

By a rearrangement,

∞∑
n=1

1
n!

x2n = exp(x2) − 1,

hence for x �= 0,

y =
1
x2

∞∑
n=1

1
n!

x2n =
exp(x2) − 1

x2
.

If x = 0, then y(0) = a0 = 1, and the sum function is

y = f(x) =

⎧⎨
⎩

exp(x2) − 1
x2

for x �= 0,

1 for x = 0.

Solution of differential equations by the power series method
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8) Alternative solution (without using the power series method). With some deftness we get

0 = x
d2y

dx2
+ (3 − 2x2)

dy

dx
− 4xy

=
{

x
d

dx

(
dy

dx

)
+ 1 · dy

dx

}
+ 2

dy

dx
−
{

2x2 dy

dx
+ 4x · y

} (
split 3

dy

dx
= 1 · dy

dx
+ 2 · dy

dx

)

=
d

dx

{
x

dy

dx

}
+

d

dx
{2y} − d

dx
{2x2y} (rule of differentiation of a product)

=
d

dx

{
x

dy

dx
+ 2(1 − x2)y

}
.

Then by integration and adding an arbitrary constant c′2,

x
dy

dx
+ 2(1 − x2)y = c′2,

thus

dy

dx
+ 2
(

1
x
− x

)
y = c′2 ·

1
x

for x �= 0.

Solution of differential equations by the power series method
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Then we get by the usual solution formula for linear differential equations of first order that the
complete solution is

y = c1 · exp(x2)
x2

+ c′2 ·
exp(x2)

x2

∫
exp(−x2)x dx = c1 · exp(x2)

x2
− c′2

2
· exp(x2)

x2
· exp(−x2)

= c1 · exp(x2)
x2

− c′2
2

· 1
x2

= c1 · exp(x2) − 1
x2

+ c2 · 1
x2

,

where we have put c2 = c1 − c′2
2

. This is due to the fact that

exp(x2) − 1
x2

=
∞∑

n=1

1
n!

x2(n−1) =
∞∑

n=0

1
(n + 1)!

x2n,

is a convergent power series with � = ∞.

Example 1.3 1) Prove that the differential equation

(5) x2 d2y

dx2
− 3x

dy

dx
+ (3 − x4)y = 0, x ∈ R,

has precisely one power series solution y =
∑∞

n=0 anxn, for which (a0, a1, a2, a3) =
(

0, 0, 0,
1
2

)
,

and find this solution.

Find the interval of convergence and sum function of the series.

2) Find another solution on R of (5), which is linearly independent of the first one, and which at
(x0, y0) = (0, 0) fulfils (y′

0, y
′′
0 , y′′′

0 ) = (1, 0, 0).

3) Find the complete solution of (5) on R+.

The problem is strictly speaking over-determined, because the singularity at x = 0, where the coeffi-
cient of y′′ is 0 also creates some conditions.

1) If we insert the formal power series

y =
∞∑

n=0

anxn,
dy

dx
=

∞∑
n=1

nanxn−1,
d2y

dx2
=

∞∑
n=2

n(n−1)anxn−2,

Solution of differential equations by the power series method
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into the differential equation we get by adding some convenient zero terms that

0 = x2 d2y

dx2
− 3x

dy

dx
+ (3 − x4)y

=
∞∑

n=2
(n=0)

n(n − 1)anxn −
∞∑

n=1
(n=0)

3nanxn

(here we add some zero terms, cf. the lower bound)

+
∞∑

n=0

3anxn −
∞∑

n=0

anxn+4

=
∞∑

n=0

(n2 − 4n + 3)anxn −
∞∑

n=4

an−4x
n

(collect according to the group anxn, and change of index)

=
∞∑

n=0

(n − 1)(n − 3)anxn −
∞∑

n=4

an−4x
n

(splitting into factors)

=
3∑

n=0

(n − 1)(n − 3)anxn +
∞∑

n=4

{(n − 1)(n − 3)an − an−4}xn

(removal of terms and collecting the series).

Hence it follows form the identity theorem that we have for the removed terms (the first finite
sum),

n = 0 : 3a0 = 0, i.e. a0 = 0,
n = 1 : 0 = 0, i.e. a1 arbitrary,
n = 2 : −a2 = 0, i.e. a2 = 0,
n = 3 : 0 = 0, i.e. a3 arbitrary,

and the recursion formula for n ≥ 4 (from the infinite series)

(n − 1)(n − 3)an = an−4, for n ≥ 4.

It follows in particular, since a0 = a2 = 0, and since there is a leap of 4 in the indices, by induction
that a2n = 0 for every n ∈ N0.

For odd indices n = 2m + 1 the recursion formula is written

2m · 2(m − 1)a2m+1 = a2m−3 = a2(m−2)+1, m ≥ 2.

If we put bm = a2m+1, then

22m(m − 1)bm = bm−2, m ≥ 2,

hence by a multiplication by 2m−2(m − 2)! �= 0 for m ≥ 2,

(6) 2mm!bm = 2m−2(m − 2)!bm−2, m ≥ 2.

Solution of differential equations by the power series method
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If we put

cm = 2mm!bm = 2mm!a2m+1,

then cm = cm−2 by (6), thus c2p+1 = · · · = c1 and c2p = · · · = c0, hence

c2p+1 = 22p+1(2p + 1! a4p+3 = c1 = 2 · 1! a3 = 2a3,

and

c2p = 22p(2p)! a4p+1 = c0 = a1,

so

a4p+1 = a1 · 1
(2p)!

· 1
22p

og a4p+3 = 2a3 · 1
(2p + 1)!

· 1
22p+1

.

2) We get by insertion that all the power series solutions are given by

y =
∞∑

n=0

anxn = a1

∞∑
p=0

1
(2p)!

(
x2

2

)2p

· x + 2a3

∞∑
p=0

1
(2p + 1)!

(
x2

2

)2p+1

· x

= a1x cosh
(

x2

2

)
+ 2a3x sinh

(
x2

2

)
,

where we have recognized the series for cosh and sinh with � = ∞.

If (a0, a1, a2, a3) =
(

0, 0, 0,
1
2

)
, we get the solution

y = x sinh
(

x2

2

)
.

Notice that we are here forced to put a0 = a2 = 0.

3) If y = x cosh
(

x2

2

)
, then

y′ = cosh
(

x2

2

)
+ x2 sinh

(
x2

2

)
, y′(0) = 1,

y′′ = x3 cosh
(

x2

2

)
+ 3x sinh

(
x2

2

)
, y′′(0) = 0,

y′′′ = 6x2 cosh
(

x2

2

)
+ (x4 + 3) sinh

(
x2

2

)
, y′′′(0) = 0.

Remark 1.3 It is actually possible directly to solve the equation by using some “dirty tricks”. The
idea is to divide by x5 for x �= 0 and then split in a clever way and of course apply the rules of

Solution of differential equations by the power series method
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differentiation of a product in the opposite way of the usual one:

0 =
1
x3

d2y

dx2
− 3

x4

dy

dx
+

3
x5

y − y

x

=
1
x2

{
1
x

d2y

dx2
− 1

x2

dy

dx

}
− 1

x2

{
1
x2

dy

dx
− 2

x3
y

}
− 1

x3

{
1
x

dy

dx
− 1

x2
y

}
− y

x

=
1
x2

d

dx

(
1
x

dy

dx

)
− 1

x2

d

dx

(
1
x2

y

)
− 1

x3

d

dx

(y

x

)
− y

x

=
1
x2

d

dx

{
1
x

dy

dx
− 1

x2
y

}
− 1

x3

d

dx

(y

x

)
− y

x

=
1
x2

d

dx

{
d

dx

(y

x

)}
− 1

x3

d

dx

(y

x

)
− y

x

=
1
x

[
1
x

d

dx

{
d

dx

(y

x

)}
− 1

x2

d

dx

(y

x

)]
− y

x

=
d

dx

{
1
x

d

dx

(y

x

)}
− y

x
.

By putting A =
1
x

d

dx
, we see that the equation can be written A2

(y

x

)
=

y

x
, so we only need to find

a more handy variable than x. It is tempting to put

“A =
1
x

d

dx
=

d

d(x2/2)
”.

Solution of differential equations by the power series method
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More precisely we apply on R+ the monotone substitution t = x2/2, x =
√

2t. Then
dt

dx
= x, hence

by the simplest form of the chain rule,

d

dt
=

dx

dt

d

dx
=

1
x

d

dx
.

Then the equation is reduce to

d2

dt2

(
y√
2t

)
−
(

y√
2t

)
= 0,

the complete solution of which is

t√
2t

= c1 cosh t + c2 sinh t,

so

y = c1

√
2t cosh t + c2

√
2t sinh t = c1x cosh

(
x2

2

)
+ c2x sinh

(
x2

2

)
. ♦

Example 1.4 Given the power series
∞∑

n=1

xn+2(
n + 2

n

) .

Find the radius of convergence �.

Prove that the sum function y = f(x) of the power series in the interval of convergence −� < x < �,
satisfies the differential equation

(1 − x)
d2y

dx2
= 2x,

and find an explicit expression of f(x).

Prove that the power series is convergent for x = �, and find the sum of the series for x = �.

1) Radius of convergence. It follows from(
n + 2

n

)
=
(

n + 2
2

)
=

(n + 2)(n + 1)
1 · 2 ,

that
∞∑

n=1

xn+2(
n + 2

n

) =
∞∑

n=1

2
(n + 1)(n + 2)

xn+2,

hence by the criterion of roots,

n
√

|an(x)| =
n
√

2 · n
√

x2

n
√

n + 1 · n
√

n + 2
· |x| → |x| for n → ∞.

The condition of convergence becomes |x| < 1, so � = 1.
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2) Differential equation. If we put

y = f(x) =
∞∑

n=1

xn+2(
n + 2

n

) =
∞∑

n=1

2
(n + 1)(n + 2)

xn+2, |x| < 1,

with f(0) = 0, then

y′ = f ′(x) =
∞∑

n=1

2
n + 1

xn+1, |x| < 1, f ′(0) = 0,

and

y′′ = f ′′(x) =
∞∑

n=1

2xn = 2x
∞∑

n=0

xn =
2x

1 − x
, |x| < 1.

It follows that

(1 − x)
d2y

dx2
= 2x.

3) Determination of f(x). Since f(0) = f ′(0) = 0, we get for |x| < 1 by integration of

d2y

dx2
=

2x
1 − x

=
2

1 − x
− 2,

that

dy

dx
=
∫ x

0

2
1 − t

dt − 2x = −2 ln(1 − x) − 2x,

and

y = f(x) = −2
∫ x

0

ln(1 − t) dt −
∫ x

0

2t dt = 2[(1 − t) ln(1 − t) + t]x0 − x2

= 2(1 − x) ln(1 − x) + 2x − x2 = 1 − (1 − x)2 + 2(1 − x) ln(1 − x),

hence

f(x) =
∞∑

n=1

2
(n+1)(n+2)

xn+2 =1 − (1−x)2+2(1−x) ln(1−x)

for |x| < 1.

4) Convergence for x = � = 1. Since
2

(n + 1)(n + 2)
∼ 2

n2
, and since

∑∞
n=1

2
n2

is convergent, the

series is even absolutely convergent for x = ±1.

The sum is traditionally found in the following way,

∞∑
n=1

2
(n + 2)(n + 1)

= 2 lim
N→∞

∞∑
n=1

{
1

n + 1
− 1

n + 2

}
= 2 lim

N→∞

{
1
2
− 1

N + 1

}
= 1.
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Alternatively, it follows by Abel’s theorem that

∞∑
n=1

2
(n + 2)(n + 1)

= lim
x→1−

f(x) = lim
x→1−

{
1−(1−x)2+2(1−x) ln(1−x)

}
=1−0+0=1

according to the laws of magnitudes.

Example 1.5 Given the differential equation

(7) (1 + x2)
d2y

dx2
+ 6x

dy

dx
+ 6y = 0, x ∈ R.

Find, expressed by a power series, a solution of (7) where

(x0, y(x0), y′(x0)) = (0, 1, 0),

and find the sum function of the series.

By insertion of the formal power series

y =
∞∑

n=0

anxn,
dy

dx
=

∞∑
n=1

nanxn−1,
d2y

dx2
=

∞∑
n=2

n(n−1)anxn−2,

into (7), and adding some zero terms we get

0 = (1 + x2)
d2y

dx2
+ 6x

dy

dx
+ 6y

=
∞∑

n=2

n(n − 1)anxn−2 +
∞∑

n=2
(n=0)

n(n − 1)anxn +
∞∑

n=1
(n=0)

6nanxn +
∞∑

n=0

6anxn

=
∞∑

n=0

(n+1)(n+2)an+2x
n+

∞∑
n=0

(n2+5n+6)anxn (grouping according to an+2x
n and anxn)

=
∞∑

n=0

{(n+1)(n+2)an+2+(n+2)(n+3)an}xn (factorize and collect the series)

=
∞∑

n=0

(n + 2) {(n + 1)an+2 + (n + 3)an}xn (remove the common factor).

It follows from the identity theorem for n ∈ N0 (the summation domain) that

(n + 2) {(n + 1)an+2 + (n + 3)an} = 0, n ∈ N0.

Since n + 2 �= 0 for every n ∈ N0, this equation is reduced to the recursion formula,

(n + 1)an+2 + (n + 3)an = 0, for n ∈ N0.

Solution of differential equations by the power series method
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Since also n + 1 �= 0 and n + 3 �= 0, this can more conveniently be written

an+2

n + 3
= − an

n + 1
, for n ∈ N0.

It follows from the line element that a0 = 1 and a1 = 0, hence the recursion formula gives by induction
that a2n+1 = 0 for every n ∈ N0. We get for even indices (n �→ 2n − 2)

a2n

2n + 1
= − a2(n−1)

2(n − 1) + 1
= · · · = (−1)n, i.e. a2n = (−1)n(2n + 1).

The formal power series solution is

y =
∞∑

n=0

a2nx2n =
∞∑

n=0

(−1)n(2n + 1)x2n.

Putting an(x) = (−1)n(2n + 1)x2n, we get by the criterion of roots th at

n
√

|an(x)| = n
√

2n + 1 · x2 → |x|2 for n → ∞.

The condition of convergence is |x|2 < 1, thus |x| < 1 and � = 1.
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Sum function. If |x| < 1, we obtain by known series expansions,

y =
∞∑

n=0

(−1)n(2n + 1)x2n = 2
∞∑

n=0

n(−x2)n +
∞∑

n=0

(−x2)n = −2x2
∞∑

n=1

n(−x2)n−1 +
1

1 + x2

= −2x2 · 1
(1 + x2)2

+
1

1 + x2
=

1 − x2

(1 + x2)2
.

Alternatively,

y =
∞∑

n=0

(−1)n(2n + 1)x2n =
d

dx

∫ x

0

∞∑
n=0

(−1)n(2n + 1)t2n dt =
d

dx

∞∑
n=0

(−1)nx2n+1

=
d

dx

{
x

∞∑
n=0

(−x2)n

}
=

d

dx

{
x

1 + x2

}
=

1 · (1+x2)−x · 2x
(1 + x2)2

=
1 − x2

(1+x2)2
.

Alternatively the equation can directly be solved in the following way for x �= 0 by a multiplication
by x, i.e. the integrating factor. This gives

0 = x

{
(1 + x2)

d2y

dx2
+ 6x

dy

dx
+ 6y

}

=
{

(x + x3)
d2y

dx2
+ (1 + 3x2)

dy

dx

}
− (1 + 3x2)

dy

dx
+ 6x2 dy

dx
+ 6xy

=
d

dx

{
(x+x3)

dy

dx

}
+
{

(3x2−1)
dy

dx
+6x · y

}

=
d

dx

{
(x + x3)

dy

dx
+ (3x2 − 1)y

}

=
d

dx

{
x2

1+x2

[
(1+x2)2

x

dy

dx
+

(3x2−1)(1+x2)
x2

y

]}

=
d

dx

{
x2

1 + x2

d

dx

(
(1 + x2)2

x
y

)}
.

For x �= 0 we get by an integration,

x2

1 + x2

d

dx

{
(1 + x2)2

x
y

}
= −c1, c1 ∈ R,

hence by a rearrangement,

d

dx

{
(1 + x2)2

x
y

}
= −c1

(
1 + x2

x2

)
= −c1

(
1 +

1
x2

)
.

Then by another integration,

(1 + x2)2

x
y = −c1

(
x − 1

x

)
+ c2 = c1 · 1 − x2

x
+ c2.

We finally obtain the complete solution for x �= 0,

y = c1 · 1 − x2

(1 + x2)2
+ c2 · x

(1 + x2)2
, c1, c2 arbitrary.

Solution of differential equations by the power series method



Download free books at BookBooN.com

Calculus 3c-4

 

23  

By insertion into the differential equation it is easily seen that this is in fact the complete solution in
all of R.

Remark 1.4 This example is an excellent illustration of the limitations of the power series method:
We only obtain the solution in the interval of convergence ] − 1, 1[, and we have to insert into the
differential equation that the solution is valid in all of R.

The reason of this strange phenomenon can be found in the concept of a “singular point of the

differential equation”. By this we understand a zero of the coefficient of the highest order term
d2y

dx2
,

here 1 + x2. The singular points are here complex , ±i, and they cannot be seen in the real analysis.
They nevertheless influence the radius of convergence, because the numerical values of all (complex)
singular points are the candidates of the radius of convergence. Here | ± i| = 1, in accordance with
� = 1.

Example 1.6 Prove that the differential equation

x2 d2y

dx2
+ 4x

dy

dx
+
(

2 − 1
4

x2

)
y = 1

has precisely one power series solution y =
∑∞

n=0 anxn, and find this solution.

Find the radius of convergence and the sum function of the series.

By insertion of the formal series

y =
∞∑

n=0

anxn,
dy

dx
=

∞∑
n=1

nanxn−1, and
d2y

dx2
=

∞∑
n=2

n(n−1)anxn−2

into the differential equation and adding some zero terms we get

1 =
∞∑

n=2
(n=0)

n(n − 1)anxn +
∞∑

n+1
(n=0)

4nanxn (add some trivial zero terms)

+
∞∑

n=0

2anxn − 1
4

∞∑
n=0

anxn+2

=
∞∑

n=0

(n2 − n + 4n + 2)anxn − 1
4

∞∑
n=2

an−2x
n

= 2a0 + 6a1x +
∞∑

n=2

{
(n + 1)(n + 2)an − 1

4
an−2

}
xn (remove some terms).

It follows from the identity theorem that a0 =
1
2
, a1 = 0 and we also get the recursion formula

(over the summation domain)

22(n + 2)(n + 1)an = an−2 for n ≥ 2.

When this is multiplied by 2n−2n! �= 0, we get

bn := 2n(n + 2)!an = 2n−2n!an−2 = bn−2 for n ≥ 2.
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Then by recursion, b2n+1 = · · · = b1 = 2 · 3!a1 = 0, hence a2n+1 = 0 for every n ∈ N0, and

b2n = 22n(2n + 2)!a2n = · · · = b0 = 2 · a0 = 2 · 1
2

= 1,

so

a2n =
1

(2n + 2)!
· 1
22n

, n ≥ 0.

By insertion we get the formal power series solution

y =
∞∑

n=0

1
(2n + 2)!

· 1
22n

x2n =
∞∑

n=0

1
(2n + 2)!

(x

2

)2n

.

The faculty in the denominator assures that � = ∞. (Apply e.g. the criterion of quotients with

an(x) =
1

(2n + 2)!

(x

2

)2n

).

Sum function. If x = 0, then er f(0) =
1
2
. If x �= 0, the structure is vary similar to that of cosh, so

we try the following rearrangement,

f(x) =
∞∑

n=0

1
(2n + 2)!

(x

2

)2n

=
4
x2

∞∑
n=1

1
(2n)!

(x

2

)2n

=
4
x2

{ ∞∑
n=0

1
(2n)!

(x

2

)2n

− 1

}

=
4
x2

{
cosh

(x

2

)
− 1
}

,

hence

f(x) =

⎧⎪⎨
⎪⎩

4
x2

{
cosh

(x

2

)
− 1
}

for x �= 0,

1/2 for x = 0.

Alternatively, the equation can be completely solved by inspection for x �= 0. In fact, we get by
some small reformulations

1 = x2 d2y

dx2
+ 4x

dy

dx
+
(

2 − 1
4

x2

)
y =

{
x2 d2y

dx2
+2x

dy

dx

}
+
{

2x
dy

dx
+2y

}
− 1

4
x2y

=
d

dx

{
x2 dy

dx

}
+

d

dx
{2xy} − 1

4
x2y =

d

dx

{
x2 dy

dy
+ 2x · y

}
− 1

4
x2y =

d2

dx2

{
x2y
}− 1

4
x2y.

We have above assumed that x �= 0, so we can put z = x2y, and thus y =
z

x2
. Then we get the

equation

d2z

dx2
− 1

4
z = 1,

the complete solution of which is

z = c1 cosh
(x

2

)
+ c2 sinh

(x

2

)
− 4,
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thus

y = − 4
x2

+ c1
1
x2

cosh
(x

2

)
+ c2

1
x2

sinh
(x

2

)
, x �= 0.

This has only a continuation to x = 0, if c1 = 4 and c2 = 0 in accordance with the solution above.

Example 1.7 Given the differential equation

(8) (1 − x2)
d2y

dx2
− x

dy

dx
+ 64y = 0, x ∈ ] − 1, 1[.

1) Prove that if y =
∑∞

n=0 anxn is a power series solution of (8), then we have the recursion formula

an+2 =
n2 − 64

(n + 1)(n + 2)
an for n ≥ 0.

2) Prove that the power series solution ϕ(x) of (8), which satisfies ϕ(0) = 1 and ϕ′(0) = 0, is a
polynomial, and find all its coefficients.

1) By insertion of the formal series

y=
∞∑

n=0

anxn,
dy

dx
=

∞∑
n=1

nanxn−1,
d2y

dx2
=

∞∑
n=2

n(n−1)anxn−2,

into the differential equation we get by adding some zero terms that

0 =
∞∑

n=2

n(n − 1)anxn−2 −
∞∑

n=1
(n=0)

n(n − 1)anxn −
∞∑

n=1
(n=0)

nanxn +
∞∑

n=0

64anxn

(we have added zero terms in the second and third series)

=
∞∑

n=0

(n + 2)(n + 1)an+2x
n −

∞∑
n=0

(n2 − 64)anxn (change of index; grouping with anxn)

=
∞∑

n=0

{
(n + 2)(n + 1)an+2 − (n2 − 64)an

}
xn, (collect the series after xn).

We get from the identity theorem for n ∈ N0 (the summation domain) that

(n + 2)(n + 1)an+2 − (n2 − 64)an = 0 for n ∈ N0.

Since (n + 2)(n + 1) �= 0 for n ∈ N0, this can be rewritten as

an+2 =
n2 − 64

(n + 1)(n + 2)
an =

(n + 8)(n − 8)
(n + 1)(n + 2)

an, n ∈ N0.

2) If ϕ(0) = 1 and ϕ′(0) = 0, then a0 = 1 and a1 = 0. The leap of the recursion formula is 2, so it
follows by induction that a2n+1 = 0 for n ∈ N0.
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For even indices we rewrite the recursion formula (n �→ 2n)

a2(n+1) =
4(n + 4)(n − 4)
(2n + 1)(2n + 2)

a2n =
2(n + 4)(n − 4)
(2n + 1)(n + 1)

a2n, n ∈ N0.

For n = 4 we get a10 = 0, and then it follows from the recursion formula that a2n = 0 for n ≥ 5.
Hence

ϕ(x) = a8x
8 + a6x

6 + a4x
4 + a2x

2 + a0.

We now have the following two methods.

a) From a0 = 1 follows from the recursion formula

a2 =
2 · 4(−4)

1 · 1 a0 = −32,

a4 =
2 · 5(−3)

3 · 2 a2 = (−5)(−32) = 160,

a6 =
2 · 6(−2)

5 · 3 a5 = −8
5
· 160 = −256,

a8 =
2 · 7(−1)

7 · 4 a6 = −1
2
(−256) = 128,

Solution of differential equations by the power series method
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thus

ϕ(x) = 128x8 − 256x6 + 160x4 − 32x2 + 1
= 32(x2 − 1)(2x2 − 1)2x2 + 1.

b) Alternatively we have found the structure

ϕ(x) = a8x
8 + a6x

6 + a4x
4 + a2x

2 + 1, a0 = 1,

so

ϕ′(x) = 8a8x
7 + 6a6x

5 + 4a4x
3 + 2a2x,

ϕ′′(x) = 56a8x
6 + 30a6x

4 + 12a4x
2 + 2a2,

hence by insertion,

0 = (1 − x2)ϕ′′(x) − xϕ′(x) + 64ϕ(x)
= 64 + 64a2x

2 + 64a4x
4 + 64a6x

6 + 64a8x
8

−2a2x
2 − 4a4x

4 − 6a6x
6 − 8x8

−2a2x
2 − 12a4x

4 − 30a6x
6 − 56a8x

8

+2a2 + 12a4x
2 + 30a6x

4 + 56a8x
6

= (64+2a2)+(60a2+12a4)x2+(48a4+30a6)x4+(28a6+56a8)x6.

Since the coefficients of this equation are 0, we must have

a2 = −32, a4 = −60
12

· a2 = 160, a6 = −48
30

· a4 = −256, a8 = −1
2

a6 = 128,

hence by insertion,

ϕ(x) = 128x8 − 256x6 + 160x4 − 32x2 + 1.

Example 1.8 Find, expressed by means of a power series, a solution through the line element (0, 0, 1)
of the differential equation

x
d2y

dx2
+ x

dy

dx
+ y = 0.

Find the radius of convergence and sum function of the series.

1) The coefficient x of the highest order term
d2y

dx2
is only 0 for x = 0 in the complex plane. Hence,

any formal power series solution of the differential equation can only have its radius of convergence
� ∈ {0,∞}. We shall hope for � = ∞.

2) Insert the formal series into the differential equation. Thus we assume that we have the
series expansions kkefremstillinger

y=
∞∑

n=0

anxn,
dy

dx
=

∞∑
n=1

nanxn−1,
d2y

dx2
=

∞∑
n=2

n(n−1)anxn−2.
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When these are inserted into the differential equation, we get

0 = x
d2y

dx2
+ x

dy

dx
+ y = x

∞∑
n=2

n(n−1)anxn−2+x
∞∑

n=1

nanxn−1+
∞∑

n=0

anxn

=
∞∑

n=2
(n=1)

n(n−1)anxn−1 +
∞∑

n=1
(n=0)

nanxn+
∞∑

n=0

anxn (reduction and addition of zero terms)

=
∞∑

n=0

(n + 1)nan+1x
n +

∞∑
n=0

(n + 1)anxn (change of index n �→ n + 1 in the first series)

=
∞∑

n=0

{(n + 1)nan+1an+1 + (n + 1)an}xn (collecting the series).

3) Identity theorem. We have here a power series for 0. This power series is unique with all its
coefficients equal to 0. Hence, every index which is included in the summation must be zero, hence
for n ∈ N0. We thus obtain the recursion formula

0 = (n + 1)nan+1 + (n + 1)an = (n + 1){nan+1 + an} for n ∈ N0.

Since n + 1 �= 0 for n ∈ N0, we can remove this factor, so we get the simpler recursion formula

(9) nan+1 + an = 0 for n ∈ N0.

Remark 1.5 If a common factor of a recursion formula has zeros in the domain of validity, then
these zeros must be excepted in the further investigator, before we can remove the factor. There
is no problem here, because n + 1 �= 0. ♦

4) Solution of the recursion formula (9).

a) Standard method. Express an+1 by an. (Warning: One must never divide by 0.) Calculate
the first coefficients. Set up an hypothesis of induction and prove it by induction (the bootstrap
principle).

i) If n = 0, then 0 · a1 + a0 = a0 = 0 (in agreement with the line element).
Then we get by the line element that a1 = f ′(0) = 1.
If n ≥ 1, then (9) is rewritten as

(10) an+1 = − 1
n

an for n ∈ N.

ii) Since a1 = 1, it follows from (10) that

a2 = −1
1

a1 = −1, n = 1,

a3 = −1
2

a2 = +
1
2
, n = 2,

a4 = −1
3

a3 = − 1
3 · 2 · 1 , n = 3.
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Based on these values, we set up the hypothesis

(11) an = (−1)n−1 · 1
(n − 1)!

, n ∈ N.

Check: It is true for n = 1, 2, 3, 4.
iii) Induction. Assume that the hypothesis is true for some n ∈ N. Then by the recursion

formula (10) the successor is

an+1 = − 1
n

an = (−1)(n+1)−1 · 1
((n + 1) − 1)!

,

which is precisely the hypothesis where n has been replaced by n + 1.
It follows by the bootstrap principle that (11) holds for every n ∈ N.

b) Recursion We get as in (a) that a0 = 0 and a1 = 1, and (10), hence

an+1 = − 1
n

an, n ∈ N.

If we replace n by n − 1, we get

an = − 1
n − 1

an−1, n ≥ 2,

hence by insertion of repetition of the process,

an+1 = − 1
n

an =
(
− 1

n

)(
− 1

n − 1

)
an−1 = · · · =

(
− 1

n

)(
− 1

n − 1

)
· · ·
(
−1

1

)
a1

(we get n factors by counting)

= (−1)n · 1
n!

a1 =
(−1)n

n!
, n ∈ N0.

We get by the change of index n �→ n − 1,

an = (−1)n−1 · 1
(n − 1)!

, n ∈ N.

c) Integrating factor. Write (9) as

nan+1 = −an for n ∈ N and a0 = 0, a1 = 1.

Multiply this equation by (−1)n(n − 1)! �= 0 for n ∈ N,

(−1)nn!an+1 = (−1)n−1(n − 1)!an for n ∈ N.

If we put bn+1 = (−1)nn!an+1, then

bn+1 = bn = · · · = b1 = (−1)00!a1 = 1,

hence

bn = (−1)n−1(n − 1)!an = 1, dvs. an =
(−1)n−1

(n − 1)!
, n ∈ N.
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We get in all three cases that

a0 = 0 and an =
(−1)n−1

(n − 1)!
for n ∈ N.

Of course, only one of the methods above is necessary.

5) The setup of a formal power series. This is

∞∑
n=0

anxn =
∞∑

n=1

(−1)n−1

(n − 1)!
xn.

Solution of differential equations by the power series method
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6) Determination of the radius of convergence! (The task is without any significance without
this step).

a) The secure method (not necessary, cf. (7) below). Put

cn(x) =
∣∣∣∣ (−1)n−1

(n − 1)!
xn

∣∣∣∣ = |x|n
(n − 1)!

≥ 0 for n ∈ N.

If x �= 0, then cn(x) > 0, and

cn+1(x)
cn(x)

=
|x|n+1

n!
· (n − 1)!

|x|n =
|x|
n

→ 0 < 1 for n → ∞.

It follows from the criterion of quotients that the formal series is convergent for every x ∈ R,
so � = ∞, and the formal solution is indeed a solution!

b) We know that � = limn→∞

∣∣∣∣ an

an+1

∣∣∣∣, if the limit exists. It follows from (10) (i.e. the recursion

formula)

an+1 = − 1
n

an

that by a rearrangement

� = lim
n→∞

∣∣∣∣ an

an+1

∣∣∣∣ = lim
n→∞n = ∞.

7) Recognize the power series by a comparison with standard series:

∞∑
n=1

(−1)n−1

(n − 1)!
xn =

∞∑
n=0

(−1)n

n!
xn+1 (change of index n �→ n + 1)

= x

∞∑
n=0

1
n!

(−x)n (reformulation)

= x exp(−x) for x ∈ R,

where we have recognized the exponential series, the radius of convergence of which is � = ∞, and
the investigation in (6) is superfluous.

Summing up we get the solution via the power series method,

y = xe−x for x ∈ R.

Alternative solution method. The power series method is rather cumbersome. In the most
elementary examples they can actually be solved alternatively by a trick follows by applications of
some rules of calculus. The not so obvious trick here is to add

1 · dy

dx
− dy

dx
= 0

to the equation. Then we get

0 = x
d2y

dx2
+ x

dy

dx
+ y =

{
x

d2y

dx2
+ 1 · dy

dx

}
− dy

dx
+
{

x
dy

dx
+ 1 · y

}
=

d

dx

{
x

dy

dx
− y + xy

}

=
d

dx

{
x

dy

dx
+ (x − 1)y

}
=

d

dx

{
x2e−x

[
ex

x

dy

dx
+

ex(x − 1)
x2

· y
]}

=
d

dx

{
x2e−x d

dx

(
exy

x

)}
.
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We get by integration of the equation

d

dx

{
x2e−x d

dx

(
ex

x

)}
= 0

that

x2e−x d

dx

(
exy

x

)
= c2,

hence

d

dx

(
exy

x

)
= c2

ex

x2
.

Then by another integration,

exy

x
= c1 + c2

∫
ex

x2
dx,

and the complete solution is

y = c1 x e−x + c2 x e−x

∫
ex

x2
dx.

For (c1, c2) = (1, 0) we get the wanted solution, i.e.

y0 = x e−x.

Solution of differential equations by the power series method
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It can be proved that

∫
ex

x2
dx =

∫ {
1
x2

+
1
x

+
∞∑

n=2

1
n!

xn−2

}
dx = − 1

x
+ ln |x| +

∞∑
n=1

1
(n + 1)! · n xn, x �= 0,

cannot be expressed by known elementary functions.

Example 1.9 Given the differential equation

(12) x
d2y

dx2
− (x + 2)

dy

dx
+ 2y = 0.

1) Find a power series solution ϕ1(x) of (12), for which

ϕ1(0) = ϕ′
1(0) = ϕ′′

1(0) = ϕ′′′
1 (0) = 1.

Find the radius of convergence and the sum function of the series.

2) Find a power series solution ϕ2(x) of (12), for which

ϕ2(0) = ϕ′
2(0) = ϕ′′

2(0) = 2 og ϕ′′′
2 (0) = 0.

Find the radius of convergence and the sum function of this series-

3) Find for each of the intervals ] −∞, 0[ and ]0,∞[ the complete solution of (12).

We see that both (1) and (2) are over-determined problems, because we in both cases have four
equations in two unknowns.

1) By insertion of the formal power series

y=
∞∑

n=0

anxn,
dy

dx
=

∞∑
n=1

nanxn−1,
d2y

dx2
=n(n−1)anxn−2

into the differential equation (12), we get by adding some zero terms in the first two series that

0 =
∞∑

n=2
(n=1)

n(n − 1)anxn−1 −
∞∑

n=1
(n=0)

nanxn −
∞∑

n=1

2nanxn−1 +
∞∑

n=0

2anxn

=
∞∑

n=1

n(n − 3)anxn−1 −
∞∑

n=0

anxn =
∞∑

n=0

{(n + 1)(n − 2)an+1 − (n − 2)an}xn.

Identity theorem. This gives for n ∈ N0 (the summation domain)

(n − 2) {(n + 1)an+1 − an} = 0 for n ≥ 0,

hence by a multiplication by n! �= 0,

(13) (n − 2) {(n + 1)!an+1 − n!an} = 0, for n ≥ 0,

which can also be applied in (2).
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If n = 2, the (13) trivially, no matter the values of a2 and a3.

If n �= 2, the recursion formula is reduced to

(14) (n + 1)! an+1 = n! an for n = 0, 1 og n ≥ 3.

It follows from ϕ1(0) = ϕ′′′
1 (0) = 1 that a0 = 1 and 3! a3 = 1, hence a3 =

1
6
. Notice that

ϕ′
1(0) = 1! a1 = 0! a0 = 1 og ϕ′′

1(0) = 2! a2 = 0! a0 = 1,

thus the conditions ϕ′
1(0) = ϕ′′

1(0) = 1 are automatically satisfied. They should not have been
assumed, because they can be derived.

Since

(n + 1)! an+1 = n! an = · · · = 3! a3 = 1 for n ≥ 3,

we have an =
1
n!

(also for n = 2, 1, 0), so

y =
∞∑

n=0

anxn =
∞∑

n=0

1
n!

= ex med � = ∞.

2) If ϕ′′′
1 (0) = 3! a3 = 0, then an = 0 for n ≥ 3 by (13), and

ϕ2(x) = 2 +
1
1!

x +
2
2!

x2 = x2 + 2x + 2,

because ϕ2(0) = 2. In particular, ϕ′
2(0) = ϕ′′

2(0) = 2, so these conditions are automatically
fulfilled, i.e. they are superfluous.

3) The complete solution for x �= 0 is then by the existence and uniqueness theorem given by

y = c1ϕ1(x) + c2ϕ2(x) = c1e
x + c2(x2 + 2x + 2),

where c1, c2 ∈ R are arbitrary constants.

We have some additional variants of solution, in which one does not apply the power series method.

First alternative. The trick for x �= 0 is to divide by x3. Then we get by some reformulations,

0 =
1
x2

d2y

dx2
− 2

x3

dy

dx
− 1

x2

dy

dx
+

2
x3

y =
d

dx

{
1
x2

dy

dx

}
− d

dx

{ y

x2

}
=

d

dx

{
1
x2

dy

dx
− y

x2

}

=
d

dx

{
ex

x2

[
e−x dy

dx
− e−xy

]}
=

d

dx

{
ex

x2

d

dx

(
e−xy

)}
.

This equation is immediately integrated:

ex

x2

d

dx

(
e−xy

)
= −c2, dvs.

d

dx

(
e−xy

)
= −c2x

2e−x,
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hence by another integration

e−xy = c1 − c2

∫
x2e−x dx = c1 + c2e

−x(x2 + 2x + 2).

The complete solution for x �= 0 is

y = c1e
x + c2(x2 + 2x + 2).

Second alternative. By inspection of the equation we see that the sum of the coefficients is 0,

x − (x + 2) + 2 = 0.

Now
d2y

dx2
=

dy

dx
= y for y = ex, so y = ex is a solution of the homogeneous equation. Then we get for

x �= 0 by norming the equation,

d2y

dx2
−
(

1 +
2
x

)
dy

dx
+

2
x

y = 0.

Then a linearly independent solution is given by

ϕ2(x) = ϕ1(x)
∫

1
ϕ1(x)2

exp
(∫ (

1 +
2
x

)
dx

)
dx = ex

∫
e−2x · ex · x2 dx = ex

∫
e−xx2 dx

= ex
{−e−x

(
x2 + 2x + 2

)}
= − (x2 + 2x + 2

)
,

and the complete solution is er

y = c1e
x + c2(x2 + 2x + 2), c1, c2 arbitrære konstanter.

Example 1.10 Prove that the function

f(x) =
√

1 − x2 · Arcsin x, x ∈ ] − 1, 1 = B4[,

fulfils the differential equation

(1 − x2)
dy

dx
+ xy = 1 − x2.

Then find a power series expansion of f(x).

When we insert

f(x) =
√

1 − x2 Arcsin x og f ′(x) = − x√
1 − x2

Arcsin x + 1

into the left hand side of the differential equation, we get

(1 − x2)f ′(x) + x f(x) = −x
√

1 − x2 Arcsin x + (1 − x2) + x
√

1 − x2 Arcsin x = 1 − x2,

which shows that f(x) =
√

1 − x2 Arcsin x fulfils the differential equation.
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Since f(0) = 0, we must have a0 = 0 in any power series expansion of f(x), if it exists, thus

f(x) =
∞∑

n=1

anxn, where f ′(x) =
∞∑

n=1

nanxn−1.

By insertion of these formal series into the differential equation we get

1 − x2 =
∞∑

n=1

nanxn−1 −
∞∑

n=1

nanxn+1 +
∞∑

n=1

anxn+1 =
∞∑

n=1

nanxn−1 −
∞∑

n=1
(n=2)

(n − 1)anxn+1

=
∞∑

n=1

nanxn−1 −
∞∑
4

(n − 3)an−2x
n−1 = a1 + 2a2x + 3a3x

2 +
∞∑

n=4

{nan − (n − 3)an−2}xn−1.

It follows from the identity theorem that

a1 = 1, a2 = 0, a3 = −1
3
,

and

nan − (n − 3)an−2 = 0 for n ≥ 4.
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By the change of index n �→ n + 2 and a rearrangement we get

(15) an+2 =
n − 1
n + 2

an for n ≥ 2.

Now a2 = 0, so (15) implies by induction that a2n = 0 for every n. For odd indices (i.e. n �→ 2n − 1
in (15)) we get by recursion

a2n+1 =
2n − 2
2n + 1

a2n−1 =
2n − 2
2n + 1

· 2n − 4
2n − 1

· · · 4
7
· 2
5
·
(
−1

3

)
= −2n(2n−2)2(2n−4)2 · · · 42 · 22

(2n + 1)!

= −22n−1n!(n − 1)!
(2n + 1)!

for n ∈ N. As a1 = 1, we find the formal series expansion

f(x) = x −
∞∑

n=1

n!(n − 1)!
(2n + 1)!

· 22n−1 · x2n+1 = x − 1
4

∞∑
n=1

n!(n − 1)!
(2n + 1)!

(2x)2n+1.

When x �= 0 the general term of the series is

an(x) = −1
4

n!(n − 1)!
(2n + 1)!

(2x)2n+1 �= 0 for n ∈ N.

Hence, by the criterion of quotients∣∣∣∣an+1(x)
an(x)

∣∣∣∣ =
(n + 1)!n!
(2n + 3)!

|2x|2n+3 · (2n + 1)!
n!(n − 1)!

· 1
|2x|2n+1

=
(n + 1)n

(2n + 3)(2n + 2)
· |2x|2 =

n + 1

n +
3
2

· x2 → x2 for n → ∞.

The convergence condition is x2 < 1, hence |x| < 1, and thus � = 1. We have proved that

f(x) =
√

1 − x2 Arcsin x = x − 1
4

∞∑
n=1

n!(n − 1)!
(2n + 1)!

(2x)2n+1 for |x| < 1.

Example 1.11 Find the power series solution of the differential equation

(16) (x − x2)
d2y

dx2
− 3x

dy

dx
− y = 0,

which goes through the line element (0, 0, 1). Find the radius of convergence and sum function of the
series. Finally find the complete solution of (16) in the interval ] − 1, 1[.

1) The equation is a linear homogeneous differential equation of second order. The coefficient x−x2 =

x(1 − x) of the highest order term
d2y

dx2
er 0 for either x = 0 or x = 1. Therefore, we can expect

that the power series solutions have the radius of convergence � ∈ {0, 1,∞}.
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2) When we insert the formal series

y=
∞∑

n=0

anxn,
dy

dx
=

∞∑
n=1

nanxn−1,
d2y

dx2
=

∞∑
n=2

n(n−1)anxn−1

into (16), we get for |x| < � by adding some zero terms in the first three series,

0 =
∞∑

n=2
(n=1)

n(n − 1)anxn−1 −
∞∑

n=2
(n=0)

n(n − 1)anxn −
∞∑

n=1
(n=0)

3nanxn −
∞∑

n=0

anxn

=
∞∑

n=1

n(n − 1)anxn−1 −
∞∑

n=0

(n2 − n + 3n + 1)anxn (the latter three series are joined)

=
∞∑

n=0

n(n + 1)an+1x
n −

∞∑
n=0

(n + 1)2anxn (adjust the exponent of xn)

=
∞∑

n=0

{
n(n + 1)an+1 − (n + 1)2an

}
xn (join the series)

=
∞∑

n=0

(n + 1){nan+1 − (n + 1)an}xn (remove the common factor).

3) An application of the identity theorem gives the recursion formula

(n + 1){nan+1 − (n + 1)an} = 0 for n ∈ N0,

where N0 is the summation domain. Now, n + 1 �= 0 for every n ∈ N0, so this can be reduced to

(17) nan+1 = (n + 1)an, for n ≥ 0.

4) The line element (0, 0, 1) implies that

y(0) = a0 = 0, og y′(0) = 1! a1 = 1, hence a1 = 1.

Notice that if we put n = 0 into (17), we also get a0 = 0, so the setup is strictly speaking
over-determined.

5) The recursion formula (17) has now been reduced to

nan+1 = (n + 1)an or an+1 =
n + 1

n
an for n ≥ 1,

because a0 = 0 and a1 = 1.

Solution of the recursion formula.

a) Induction. It follows from a1 = 1 that

a2 =
2
1
· a1 = 2, a3 =

3
2
· a2 = 3.
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Induction hypothesis:

an = n for n ∈ N, (rigtig for n = 1, 2, 3)

Assume that the hypothesis is true for some n ∈ N. Then we get for the successor that

an+1 =
n + 1

n
· an =

n + 1
n

· n = n + 1,

which has the same structure as the hypothesis, only with n replaced by n + 1.

The hypothesis then follows by induction. (The bootstrap principle).

b) Recursion. From a1 = 1 and an =
n

n − 1
an−1 for n ≥ 2 it follows recursively that

an =
n

n − 1
an−1 =

n

n − 1

{
n − 1
n − 2

an−2

}
= · · · =

n

n − 1
n − 1
n − 2

· · · 2
1

a1 = n.

Since also a1 = 1, we have in general an = n for n ∈ N.

c) The divine inspiration. If we divide the recursion formula by (n + 1)n �= 0, then

an+1

n + 1
=

an

n
, n ∈ N.

By putting bn =
an

n
, this is also written

bn+1 = bn = · · · = b1 =
a1

1
= 1, dvs. bn =

an

n
= 1,

hence

an = n for n ∈ N.

6) The formal power series solution is

y =
∞∑

n=1

nxn.

The radius of convergence may e.g. be found by the criterion of roots. In fact, put cn(x) =
n|x|n ≥ 0. Then

n
√

cn(x) = n
√

n · |x| → 1 · |x| for n → ∞.

The condition of convergence is that |x| < 1 = �, hence the radius of convergence is � = 1, and
the series is convergent for x ∈ ] − 1, 1[.

Once the interval of convergence has been found, we know that we have found a true power series
solution

y =
∞∑

n=1

nxn, for x ∈ ] − 1, 1[.
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7) Sum function. When x ∈ ] − 1, 1[, we are allowed to perform the following reformulations,

y =
∞∑

n=1

nxn = x

∞∑
n=1

nxn−1 = x
d

dx

⎧⎪⎨
⎪⎩

∞∑
n=1

(n=0)

xn

⎫⎪⎬
⎪⎭ = x

d

dx

(
1

1 − x

)
=

x

(1 − x)2
.

8) The complete solution in ] − 1, 1[. We have proved that

y1 =
x

(1 − x)2
, for x ∈ ] − 1, 1[,

is a solution of (16). When x �= 0 we norm (16),

d2y

dx2
− 3

1 − x

dy

dx
− 1

x(1 − x)
y = 0 for 0 < |x| < 1,

where

f1(x) = − 3
1 − x

.
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Then

exp
(
−
∫

f1(x) dx

)
= exp

(
+3
∫

dx

1 − x

)
= exp(−3 ln |1 − x|) =

1
(1 − x)3

,

hence for 0 < |x| < 1

y2(x) = y1(x)
∫

1
y1(x)2

exp
(
−
∫

f1(x) dx

)
dx

=
x

(1 − x)2

∫
(1 − x)4

x2
· 1
(1 − x)3

dx =
x

(1 − x)2

∫
1 − x

x2
dx

=
x

(1 − x)2

∫ {
1
x2

− 1
x

}
dx =

x

(1 − x)2

{
− 1

x
− ln |x|

}
= −x ln |x| + 1

(1 − x)2
.

By changing sign, y2(x) �→ −y2(x), we get the complete solution

y(x) = c1y1(x) − c2y2(x) = c1 · x

(1 − x)2
+ c2 · x ln |x| + 1

(1 − x)2
,

for 0 < |x| < 1 with arbitrary constants c1 and c2 ∈ R.

9) Extension to x = 0. (This is here fairly difficult.) Due to the laws of magnitude we have
x · ln |x| → 0 for x → 0. Hence, y2(x) can be extended continuously to x = 0 by taking the limit,

lim
x→0

(−y2(x)) = lim
x→0

x ln |x| + 1
(1 − x)2

=
0 + 1

(1 − 0)2
= 1,

hence we have the continuous extension

−y2(x) =

⎧⎨
⎩

x ln |x| + 1
(1 − x)2

for x �= 0,

1 for x = 0.

We note here that −y2(x) is not continuously differentiable at x = 0. We have e.g.

d

dx
(x ln |x|) = 1 + ln |x| → −∞ for x → 0,

and y2(x) does not belong to the class C2 i x = 0.
It is possible to interpret the solution, if we use the concept of weak differentiation.

10) Alternative solution for 0 < |x| < 1 without using series. This variant is very hard, so it is
only given here without comments. It shall only illustrate that it is also a possible method in this
case. We rewrite the equation in the following way:

0 = (x − x2)
d2y

dx2
− 3x

dy

dx
− y

=
{

(x − x2)
d

dx

(
dy

dx

)
+ (1 − 2x)

dy

dx

}
− dy

dx
−
{

x
dy

dx
+ 1 · y

}

=
d

dx

{
(x − x2)

dy

dx

}
− dy

dx
− d

dx
{x · y}

=
d

dx

{
x(1 − x)

dy

dx
− (1 + x)y

}
(can be integrated)

=
d

dx

{
x2

1 − x

[
(1 − x)2

x

dy

dx
− 1 − x2

x2
y

]}
=

d

dx

{
x2

1 − x

d

dx

[
(1 − x)2

x
y

]}
.
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Integration of

d

dx

{
x2

1 − x

d

dx

[
(1 − x)2

x
y

]}
= 0

gives with an arbitrary constant −c2 (notice the sign)

x2

1 − x

d

dx

[
(1 − x)2

x
y

]
= −c2,

from which
d

dx

[
(1 − x)2

x
y

]
= −c2 · 1 − x

x2
= c2

(
1
x
− 1

x2

)
.

Then by another integration,

(1 − x)2

x
y = c1 + c2

(
ln |x| + 1

x

)
,

and thus

y = c1 · x

(1 − x)2
+ c2 · x ln |x| + 1

(1 − x)2
for 0 < |x| < 1.

Then proceed as in (9).

Example 1.12 Find a power series solution of the differential equation

(1 − x2)
d2y

dx2
− 2x

dy

dx
+ 2y = 0,

through the line element (0, 1, 0). Find the interval of convergence of the series and check, if the series
is convergent at the endpoints of the interval. Finally, find the sum function of the series.

When we insert the formal series

y=
∞∑

n=0

anxn,
dy

dx
=

∞∑
n=1

nanxn−1,
d2y

dx2
=

∞∑
n=2

n(n−1)anxn−2

into the differential equation, we get by adding some zero terms in the second series that

0 = (1 − x2)
d2y

dx2
− 2x

dy

dx
+ 2y

=
∞∑

n=2

n(n − 1)an −
∞∑

n=2
(n=0)

n(n − 1)anxn −
∞∑

n=1
(n=0)

2nanxn +
∞∑

n=0

2anxn

=
∞∑

n=0

(n+2)(n+1)an+2x
n−

∞∑
n=0

(n2−n+2n−2)anxn

=
∞∑

n=0

(n+2)(n+1)an+2x
n −

∞∑
n=0

(n2+n−2)anxn

=
∞∑

n=0

(n+2)(n+1)an+2x
n −

∞∑
n=0

(n+2)(n−1)anxn

=
∞∑

n=0

(n + 2){(n + 1)an+2 − (n − 1)an}xn.
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It follows from the identity theorem that if n ∈ N0 (the summation domain), then

(n + 2){(n + 1)an+2 − (n − 1)an} = 0 for n ∈ N0.

Now, n + 2 �= 0 for every n ∈ N0, so this can also be written

(n + 1)an+2 = (n − 1)an for n ∈ N0.

There is a leap of 2 in the indices, and for n = 1,

2 · a3 = 0 · a1 = 0,

hence by induction, a2n+1 = 0 for n ≥ 1, while a1 is arbitrary.

In particular, y = x is a solution which can also be seen immediately.

We get for even indices

(2n−1)a2n = · · ·=(0−1) · a0 =−a0, dvs. a2n = − 1
2n − 1

a0.

It follows from the line element that a0 = 1 and a1 = 0, hence the formal power series solution becomes

y = 1 −
∞∑

n=1

1
2n − 1

x2n.

We get by the criterion of roots,

n
√

|an(x)| =
1

n
√

2n − 1
x2 → x2 for n → ∞.

The condition of convergence x2 < 1 implies that � = 1.

Clearly,
∑∞

n=1

1
2n − 1

is divergent, so the series is divergent at both of the endpoints of the interval

of convergence.

Sum function. If |x| < 1, then

y = 1 −
∞∑

n=1

1
2n − 1

x2n = 1 − x

∞∑
n=1

1
2n − 1

x2n−1 = 1 − x

∞∑
n=1

∫ x

0

t2n−2 dt

= 1 − x

∫ x

0

∞∑
n=0

t2n dt = 1 − x

∫ x

0

1
1 − t2

dt = 1 − x

2

∫ x

0

(
1

1 + t
+

1
1 − t

)
dt = 1 − x

2
ln
(

1 + x

1 − x

)
.

Alternatively we get the solution y = x by inspection. It is therefore reasonable for x �= 0 to find a
differential equation in z =

y

x
instead. By insertion of y = xz we get

0 = (1 − x2)
d2y

dx2
− 2x

dy

dx
+ 2y = (1 − x2)

d2

dx2
(xz) − 2x

d

dx
(xz) + 2xz

= (1−x2)
d

dx

(
x

dz

dx
+z

)
−2x2 dz

dx
−2xz+2xz = (1 − x2)

{
x

d2z

dx2
+ 2

dz

dx

}
− 2x2 dz

dx

= x(1 − x2)
d2z

dx2
+ 2(1 − 2x2)

dz

dx
.
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This is a linear differential equation of first order in u =
dz

dx
, and it can therefore be solved by the

usual methods.

Alternatively the equation is multiplied by x �= 0 (our assumption), hence

0 = (x2 −x4)
d2z

dx2
+(2x− 4x3)

dz

dx
= (x2 −x4)

d

dx

(
dz

dx

)
+

d

dx
(x2 −x4) · dz

dx
=

d

dx

{
x2(1 − x2)

dz

dx

}
.

Then by an integration,

x2(1 − x2)
dz

dx
= c,

thus

dz

dx
=

c

x2(1 − x2)
= c

{
1
x2

+
1
2

1
x + 1

− 1
2

1
x − 1

}
.

By another integration we get

z = c1 + c

{
− 1

x
+

1
2

ln
∣∣∣∣x + 1
x − 1

∣∣∣∣
}

.
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Since y = xz and |x| < 1, and if we put c = −c2, we get

y = c1x + c2

{
1 − x

2
ln
(

1 + x

1 − x

)}
for |x| < 1.

Here we have allowed x = 0, because it is seen that the solution can be extended continuously to this
value.

Example 1.13 1) Prove that every power series solution of the differential equation

(x − x2)
d2y

dx2
− dy

dx
+ 2y = 0,

is of the simple form ϕ(x) = kx2, where k is an arbitrary constant.

2) Then find a power series solution ϕ(x) with ϕ′′(0) = 0 of the differential equation

(x − x2)
d2y

dx2
− dy

dx
+ 2y = 3x2,

and find the radius of convergence and sum function of this power series solution.

3) Finally, find the complete solution in the interval ]0, 1[ of the two differential equations.

1) By insertion of the formal series

y=
∞∑

n=0

anxn,
dy

dx
=

∞∑
n=1

nanxn−1,
d2y

dx2

∞∑
n=2

n(n−1)anxn−2

into the left hand side of the differential equation we get by adding some zero terms to the first
two series,

(x − x2)
d2y

dx2
− dy

dx
+ 2y =

∞∑
n=2

(n=1)

n(n − 1)anxn−1 −
∞∑

n=2
(n=0)

n(n − 1)anxn −
∞∑

n=1

nanxn−1 +
∞∑

n=0

2anxn

=
∞∑

n=1

n(n − 2)anxn−1 −
∞∑

n=0

(n2 − n − 2)anxn

=
∞∑

n=0

(n − 1)(n + 1)an+1x
n −

∞∑
n=0

(n − 2)(n + 1)anxn

=
∞∑

n=0

(n + 1){(n − 1)an+1 − (n − 2)an}xn.

The right hand side of the differential equation is 0, and n + 1 �= 0 for every n ∈ N0 (summation
domain), hence we get by the identity theorem that

(n − 1)an+1 = (n − 2)an, for n ∈ N0.

If n = 2, then a3 = 0, hence an = 0 for every n ≥ 3.

If n = 1, then a1 = 0, hence a0 = 0.

Summing up we get that y = a2x
2 are the only power series solutions of the homogeneous equation.
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2) Since the left hand side of the inhomogeneous equation already has been calculated above as a
series, we immediately get

3x2 =
∞∑

n=0

(n + 1){(n − 1)an+1 − (n − 2)an}xn.

Since n + 1 �= 0, we get by the identity theorem for n = 2 that

3=(2+1){(2−1)a2+1−(2−2)a2}=3a3, thus a3 = 1,

and

(n − 1)an+1 = (n − 2)an for n ∈ N0 \ {2}.
We get from ϕ′′(0) = 0 that a2 = 0. If n = 1 then 0 = −a1, so a1 = 0.

If n = 0, then −a1 = 0 = −2a0, hence a0 = 0.

If n ≥ 3, then

(n−1)an+1 =(n−2)a2 = · · ·=(3−2)a3 =1, dvs. an =
1

n − 2
.

The formal power series solution is

y=
∞∑

n=3

1
n−2

xn =x2
∞∑

n=1

1
n

xn =−x2 ln(1−x) for |x| < 1,

where we have recognized the logarithmic series with � = 1.

3) By norming we get the homogeneous equation

d2

dx2
− 1

x(1 − x)
dy

dx
+

2
x(1 − x)

y = 0, for x ∈ ]0, 1[.

Now, ϕ1(x) = x2 is a solution, so a linearly independent solution is given by

ϕ2(x) = x2

∫
1
x4

exp
(∫

dx

x(1 − x)

)
dx = x2

∫
1
x4

exp
(∫ (

1
x

+
1

1 − x

)
dx

)
dx

= x2

∫
1
x2

· x

1 − x
dx = x2

∫
1

x3(1 − x)
dx

= x2

∫ {
1

1 − x
+

1
x3

+
1
x2

+
1
x

}
dx (decomposition)

= x2

{
ln
(

x

1−x

)
− 1

2x2
− 1

x

}
=x2 ln

(
x

1−x

)
− 1

2
−x.

If x ∈ ]0, 1[ the complete solution of (1) is given by (the arbitrary constants are c1, c2),

y = c1x
2 + c2

{
x2 ln

(
x

1 − x

)
− 1

2
− x

}
,

and of (2),

y = −x2 ln(1 − x) + c1x
2 + c2

{
x2 ln

(
x

1 − x

)
− 1

2
− x

}
.
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The equations can also be solved in a different way:

First alternative. Since x2 is a solution of the homogeneous equation, we insert y = x2z into the
inhomogeneous equation and set up a differential equation in z. Then

3x2 = (x − x2)
d2

dx2
(x2z) − d

dx
(x2z) + 2x2z = x(1−x)

d

dx

{
x2 dz

dx
+2xz

}
−x2 dz

dx
−2xz+2x2z

= x(1−x)
{

x2 d2z

dx2
+4x

dz

dx
+2z

}
−x2 dz

dx
−2xz(1−x) = x3(1 − x)

d2z

dx2
+ x2(4 − 4x − 1)

dz

dx

= (x3 − x4)
d2z

dx2
+ (3x2 − 4x3)

dz

dx

(
can now be solved as a first order equation in

dz

dx

)

= (x3 − x4)
d

dx

(
dz

dx

)
+

d

dx
(x3 − x4) · dz

dx
=

d

dx

{
x3(1 − x)

dz

dx

}

=
d

dx

{
x3(1 − x)

d

dx

( y

x2

)}
.

When we integrate this equation in the interval ]0, 1[, we get

x3(1 − x)
d

dx

( y

x2

)
= x3 + c2,

hence

d

dx

( y

x2

)
=

1
1 − x

+
c2

x3(1 − x)
=

1
1 − x

+ c2

(
1

1 − x
+

1
x3

+
1
x2

+
1
x

)
.

The complete solution of the inhomogeneous equation is obtained by another integration followed by
a multiplication by x2,

y = −x2 ln(1 − x) + c1x
2 + c2x

2

{
ln
(

x

1 − x

)
− 1

2x2
− 1

x

}

= −x2 ln(1 − x) + c1x
2 + c2

{
x2 ln

(
x

1 − x

)
− 1

2
− x

}
, x ∈ ]0, 1[.

Second alternative. It is possible directly to obtain the differential equation in the first alternative
in the interval ]0, 1[ by using the following rearrangements

3x2 = (x − x2)
d2y

dx2
− dy

dx
+ 2y (add something and subtract it again)

=
{

(x − x2)
d

dx

(
dy

dx

)
+ (1 − 2x)

dy

dx

}
− 2

dy

dx
+ 2
{

x
dy

dx
+ 1 · y

}

=
d

dx

{
x(1 − x)

dy

dx
− 2(1 − x)y

}
=

d

dx

{
x3(1 − x)

[
1
x2

dy

dx
− 2

x3
y

]}

=
d

dx

{
x3(1 − x)

d

dx

( y

x2

)}
.

Then continue as in the first alternative.
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2 Larger examples of the power series method

Example 2.1 Find a power series solution y =
∑∞

n=0 anyn where y(0) = y′(0) = 0 of the differential
equation

(x + x2)
d2y

dx2
+ x

dy

dx
− y = 2x.

Find the radius of convergence and the sum function of this power series solution.

1) Assume that the solution has the formal power series solution

y =
∞∑

n=0

anxn, y′ =
∞∑

n=1

nanxn−1, y′′ =
∞∑

n=2

n(n − 1)anxn−2.

We get from the initial conditions,

y(0) = a0 = 0 og y′(0) = 1 · a1 = a1 = 0,

Larger examples of the power series method
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so the formal series are

y =
∞∑

n=2

anxn, y′ =
∞∑

n=2

nanxn−1, y′′ =
∞∑

n=2

n(n − 1)anxn−2,

with the same lower bound n = 2.

2) The coefficient of the term of highest order is x + x2 = x(x + 1) = 0 for x = 0 and x = −1 (the
singular points). Hence, the radius of convergence satisfies � ∈ {0, 1,∞}.

3) By insertion of the series into the differential equation we obtain by reading from the right towards
the left,

2x = (x+x2)
∞∑

n=2

n(n−1)anxn−2+x

∞∑
n=2

nanxn−1−
∞∑

n=2

anxn

=
∞∑

n=2

n(n−1)anxn+
∞∑

n=2

anxn−1anxn−1+
∞∑

n=2

nanxn−
∞∑

n=2

anxn

=
∞∑

n=2

{n2−n+n−1}anxn+
∞∑

n=1

n(n+1)an+1x
n

= 2a2x +
∞∑

n=2

(n+1){(n−1)an+nan+1}xn.

4) Then it follows from the identity theorem,

2a2 = 2, thus a2 = 1,

and the recursion formula [NB: The factor n + 1 > 0 can be removed]

(n − 1)an + nan+1 = 0 for n ≥ 2,

i.e. when n goes through the summation domain.

5) Solution of the recursion formula. We write this formula in one of the following ways

an+1 = −n−1
n

an, n ≥ 2, eller nan+1 = −(n−1)an, n ≥ 2.

a) Induction. Since a2 = 1, we get

a3 = −2−1
2

a2 = −1
2
, n = 2,

a4 = −3−1
3

a3 =
(
−2

3

)(
−1

2

)
=

1
3
, n = 3,

a5 = −4−1
4

a4 =
(
−3

4

)
· 1
3

= −1
4
, n = 4.

A reasonable induction hypothesis is

(18) an =
(−1)n

n − 1
for n ≥ 2.
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At least this is fulfilled for n = 2, 3, 4. Assume that (18) holds for some n ≥ 2. Then we get
for the successor an+1 by using the recursion formula,

an+1 = −n − 1
n

· (−1)n

n − 1
=

(−1)n+1

n
=

(−1)n+1

{n + 1} − 1
,

which has the same structure as (18), only with n replaced by n+1. We conclude by induction
(the bootstrap principle) that (18) holds in general.

b) Recursion. When we repeat the recursion formula downwards, we get instead

an+1 = −n − 1
n

an =
(
−n − 1

n

)(
−n − 2

n − 1

)
an−1 = · · ·

=
(
−n − 1

n

)(
−n − 2

n − 1

)
· · ·
(
−1

2

)
a2 (n−1 factors)

= (−1)n−1 · 1
n

,

hence by the change of index, n + 1 �→ n,

an =
(−1)n

n − 1
for n ≥ 2.

c) Inspection. If we put bn = (n − 1)an, then

bn = −bn−1 = (−1)2bn−2 = · · · = (−1)n−2bn−(n−2) = (−1)nb2,

so

bn = (n − 1)an = (−1)nb2 = (−1)n(2 − 1)a2 = (−1)n,

and

an =
(−1)n

n − 1
for n ≥ 2.

We obtain by all three methods

a0 = a1 = 0 and an =
(−1)n

n − 1
for n ≥ 2.

6) The formal series is

y =
∞∑

n=2

anxn =
∞∑

n=2

(−1)n

n − 1
xn = x

∞∑
n=1

(−1)n+1

n
xn.

Here we recognize the logarithmic series with � = 1, and the sum of the series is for |x| < 1,

y = x ln(1 + x), x ∈ ]− 1, 1[.

7) (No details). This equation can also be rewritten in a convenient way:

d

dx

{
x2(x + 1)

d

dx

(y

x

)}
= 2x for x �= 0,−1.
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The complete solution is then obtained by two integrations and a reduction,

y = x ln |1 + x| + c1x + c2

{
x ln
∣∣∣∣x + 1

x

∣∣∣∣− 1
}

for x �= 0,−1.

Every solution can by continuity be extended to x = 0.

8) It should be mentioned that it is also possible just to guess the solution y = x of the homogeneous
equation, and the the equation can be solved by some known solution formula.

Example 2.2 Find the radius of convergence and sum function of the power series
∞∑

n=0

x2n+1

n!
.

Prove that a power series solution of the differential equation

(19) y′′ − 2xy′ − 4y = 0,

which fulfils y(0) = 0, is of the form k
∑∞

n=0

x2n+1

n!
, where k is an arbitrary constant. Check if there

exist other power series solutions of the differential equation (19).

1) We immediately get the sum function by

f(x) =
∞∑

n=0

x2n+1

n!
= x

∞∑
n=0

(x2)n

n!
= x · exp(x2),

and the radius of convergence is � = ∞.

2) When we insert the formal power series

y =
∞∑

n=0

anxn, y′ =
∞∑

n=1

nnxn−1, y′′ =
∞∑

n=2

n(n − 1)anxn−2,

into the differential equation, we get by adding some zero terms,

0 = y′′ − 2xy′ − 4y

=
∞∑

n=2

n(n − 1)anxn−2 −
∞∑

n=1
(n=0)

2nanxn −
∞∑

n=0

4anxn

=
∞∑

n=0

(n + 2)(n + 1)an+2x
n −

∞∑
n=0

2(n + 2)anxn

=
∞∑

n=0

(n + 2){(n + 1)an+2 − 2an}xn.

Now, n + 2 �= 0 for n ∈ N0, so we conclude from the identity theorem that

(n + 1)an+2 = 2an, i.e. an+2 =
2

n + 1
an, n ∈ N0,
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with a leap of 2 in the indices.

If y(0) = 0, then a0 = 0, so a2n = 0 by induction.

If a1 = y′(0) = k, then

a2n+1 =
2
2n

a2n−1 =
1
n

a2n−1.

If we multiply by n! �= 0, then we get by recursion,

n!a2n+1 = (n − 1)!a2(n−1)+1 = · · · = 1!a1 = k,

hence

a2n+1 =
k

n!
, n ∈ N0.

By (1) the power series solution is

k

∞∑
n=0

1
n!

x2n+1 = kx · exp(x2), x ∈ R.
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3) Then let y(0) = a0 = k �= 0 and y′(0) = 0. We get a2n+1 = 0, and

a2n =
2

2n − 1
· a2(n−1) =

4n
2n(2n − 1)

· a2(n−1).

When we multiply by
(2n)!
4nn!

this equation is transferred into

(2n)!
4nn!

a2n =
(2(n−1))!

4n−1(n−1)!
a2(n−1) = · · · =

0!
40 · 0!

a0 = k,

hence

a2n =
4nn!
(2n)!

· k, n ∈ N0.

The formal series is

k
∞∑

n=0

4nn!
(2n)!

x2n.

For x �= 0 we get by the criterion of quotients that∣∣∣∣an+1(x)
an(x)

∣∣∣∣ = k · 4n+1(n+1)!x2n+2

(2n + 2)!
· (2n)!
k · 4nn!x2n

=
4(n+1)x2

(2n+2)(2n+1)
=

2x2

2n+1
→ 0 for n → ∞.

This proves that the formal series is convergent for every x ∈ R.

It follows from the existence and uniqueness theorem that the complete solution of the dif-
ferential equation is given by

y = c1 x exp(x2) + c2

∞∑
n=0

4nn!
(2n)!

x2n for x ∈ R,

where c1 and c2 are arbitrary constants.
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Example 2.3 Given the initial value problem

(20)

⎧⎪⎨
⎪⎩

4x
d2y

dx2
+ 2

dy

dx
− y = 0, x ≥ 0,

y(0) = 1, y′(0) =
1
2
.

1) Assume that

y =
∞∑

n=0

anxn

is a power series solution of (20). Find a recursion formula for the coefficients an.

2) Prove that the recursion formula is fulfilled for

an =
1

(2n)!
, n ∈ N0.

3) Find the interval of convergence of the power series solution.

4) Find the sum function of the power series solution for x ≥ 0.

(Hint: Replace x by
√

x in a known power series).

1) When we insert the formal power series

y =
∞∑

n=0

anxn,
dy

dx
=

∞∑
n=1

nanxn−1,
d2y

dx2
=

∞∑
n=2

n(n−1)anxn−2,

into the differential equation and add some zero terms, we get

0 = 4x
d2y

dx2
+ 2

dy

dx
− y =

∞∑
n=2

(n=1)

4n(n−1)anxn−1+
∞∑

n=1

2nanxn−1−
∞∑

n=0

anxn

=
∞∑

n=1

2n(2n − 1)anxn−1 −
∞∑

n=0

anxn =
∞∑

n=1

2n(2n − 1)anxn−1 −
∞∑

n=1

an−1x
n−1

=
∞∑

n=1

{2n(2n − 1)an − an−1}xn−1.

We derive from the identity theorem the recursion formula

2n(2n − 1)an = an−1 for n ∈ N.

2) Then we get from the initial values

a0 = y(0) = 1 and a1 = y′(0) =
1
2
.

If we put n = 1 into the recursion formula, we see that

2 · (2 − 1)a1 = 2a1 = a0,
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which is in accordance with the given values.

If we multiply the recursion formula by (2n − 2)!, we get

(2n)!an = (2(n − 1))!an−1 = · · · = 0! a0 = a0 = 1,

hence

an =
1

(2n)!
, in particular a0 = 1 and a1 =

1
2
.

Alternatively we assume that an−1 =
1

(2(n − 1))!
for some n ∈ N. This is true for n = 1 and

n = 2. Then we get from the recursion formula

an =
1

2n(2n − 1)
an−1 =

1
2n(2n − 1)(2n − 2)!

=
1

(2n)!
,

and the claim follows by induction.

3) The formal power series solution is

y =
∞∑

n=0

anxn =
∞∑

n=0

1
(2n)!

xn.

If we put cn =
|x|n
(2n)!

, then cn > 0 for x �= 0, and

cn+1

cn
=

|x|n+1

(2n + 2)!
· (2n)!
|x|n =

|x|
(2n + 2)(2n + 1)

→ 0 for n → ∞,

It follows from the criterion of quotients that the interval of convergence is R.

Alternatively,∣∣∣∣∣
∞∑

n=0

1
(2n)!

xn

∣∣∣∣∣ ≤
∞∑

n=0

1
n!
|x|n = e|x| for alle x ∈ R,

and it follows from the criterion of comparison that the interval of convergence is R

4) If x ≥ 0, then

y =
∞∑

n=0

1
(2n)!

xn =
∞∑

n=0

1
(2n)!

(
√

x)2n = cosh(
√

x).

Remark 2.1 If y1(t) = cosh(
√

x) is known for x > 0, then the complete solution can be found for
x > 0 by a known solution formula. By norming we get

d2y

dx2
+

1
2x

dy

dx
− 1

4x
y = 0, x > 0.
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Then

y2(x) = y1(x)
∫

1
y1(x)2

exp
(
−
∫

f1(x) dx

)
dx = cosh(

√
x)
∫

1
cosh2(

√
x)

exp
(
−
∫

1
2x

dx

)
dx

= cosh(
√

x)
∫

1
cosh2(

√
x)

· 1√
x

dx = cosh(
√

x) · 2
∫

u=
√

x

du

cosh2 u

= 2 cosh(
√

x) · tanh(
√

x) = 2 sinh(
√

x).

The complete solution for x ∈ R+ is not surprisingly

y = c1 cosh(
√

x) + c2 sinh(
√

x), c1, c2 arbitrary.

Notice that

sinh(
√

x) =
∞∑

n=0

1
(2n + 1)!

(
√

x)2n+1 =
∞∑

n=0

1
(2n + 1)!

xn+(1/2)

formally is not a power series solution, because every exponent contains one half.
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Remark 2.2 If x < 0, we get analogously [because x = −|x|]

y =
∞∑

n=0

1
(2n)!

xn =
∞∑

n=0

(−1)n

(2n)!
|x|n

=
∞∑

n=0

(−1)n

(2n)!
(
√

|x|)2n = cos(
√

|x|).

By repeating the calculations of Remark 2.1 we get the complete solution for x < 0,

y = c1 cos(
√

|x|) + c2 sin(
√

|x|), c1, c2 arbitrære.

Example 2.4 Given the differential equation

(21) x
d2y

dx2
− (2x2 + 1)

dy

dx
− 4xy = 0, x ∈ R.

1) Prove that if the power series of radius of convergence � > 0,

(22)
∞∑

n=0

anxn, x ∈ ]− �, �[,

is a solution of (21), then

−a1 − 4a0x +
∞∑

n=3

n{(n−2)an−2an−2}xn−1 = 0, x ∈ ]− �, �[.

2) Prove that (21) has a solution y = ϕ(x) of the form (22), satisfying the conditions ϕ(0) = 0,
ϕ′(0) = 0, ϕ′′(0) = 2.

3) Find the sum function of the power series in (2).

1) The coefficient of the highest order term
d2y

dx2
is 0 for x = 0. Hence, we can expect that � ∈ {0,∞}.

We get by insertion of the formal series (22) into (21) (where we add some zero terms) that

0 =
∞∑

n=2
(n=1)

n(n−1)anxn−1−
∞∑

n=1
(n=0)

2nanxn+1−
∞∑

n=1

nanxn−1−
∞∑

n=0

4anxn+1

=
∞∑

n=1

n(n − 1)anxn−1 −
∞∑

n=0

2(n + 2)anxn+1 =
∞∑

n=1

n(n − 2)anxn−1 −
∞∑

n=2

2nan−2x
n−1

= −a1 − 4a0x +
∞∑

n=3

n{(n − 2)an − 2an−2}xn−1.
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2) Assume that ϕ(x) =
∑∞

n=0 anxn is a solution of (21) with

ϕ(0) = a0 = 0, ϕ′(0) = 1 · a1 = 0, ϕ′′(0) = 2a2 = 2.

Then we must have

a0 = 0, a1 = 0 og a2 = 1.

By these assumptions the expression of (1) is reduced to

0 =
∞∑

n=3

n{(n − 2)an − 2an−2}xn−1.

It follows from the identity theorem that we get the recursion formula

n{(n − 2)an − 2an−2} = 0, for n ≥ 3.

Since n �= 0, this equation is reduced to

(n − 2)an = 2an−2 for n ≥ 3.

There is a leap of 2 in the indices, so we must consider the cases of n odd or even separately.

a) If n = 2p + 1 is odd, then the recursion formula becomes

(2p − 1)a2p+1 = 2a2p−1, p ≥ 1.

Now a1 = 0, so a3 = 0, etc., and it follows by induction that all a2p+1 = 0.

b) If n = 2p (≥ 3), hence p ≥ 2, we get instead

(2p − 2)a2p = 2a2p−2, p ≥ 2,

which is reduced to

(p − 1)a2p = a2(p−1), p ≥ 2.

Here there are more possible solutions:

i) The elegant one. Multiply by (p − 2)! �= 0. It follows immediately that

(p − 1)!a2p = (p − 2)!a2(p−1) = · · · = 1!a2 = 1,

hence

a2p =
1

(p − 1)!
for p ≥ 2 (even for p ≥ 1).

ii) Recursion. By iteration of

a2p =
1

p − 1
a2(p−1), p ≥ 2,

(notice how p − 1 occurs on the right hand side) we get

a2p =
1

p − 1
· 1
p − 2

· · · 1
1
· a2·1 =

1
(p − 1)!

, p ≥ 2, (p ≥ 1).

Larger examples of the power series method



Download free books at BookBooN.com

Calculus 3c-4

 

59  

iii) Induction. It follows from a2 = 1 that

p = 2 : a4 = 1; p = 3 : a6 =
1

3 − 1
a4 =

1
2
,

p = 4 : a8 =
1

4 − 1
a6 =

1
3 · 2 =

1
3!

.

Then we set up the hypothesis

a2p =
1

(p − 1)!
(True for p = 1, 2, 3, 4).

By the recursion formula (p �→ p + 1),

a2(p+1) =
1
p

a2p =
1
p
· 1
(p − 1)!

=
1
p!

,

and the hypothesis follows in general by induction.

Summing up we have proved that we necessarily must have that

a0 = 0, a2n−1 = 0, a2n =
1

(n − 1)!
for n ∈ N.

Then we get formally,

ϕ(x) =
∞∑

n=0

anxn =
∞∑

n=1

a2nx2n =
∞∑

n=1

1
(n − 1)!

x2n.

It remains to be proved that the radius of convergence is � > 0. This can either be done by
comparing with a standard series of known radius of convergence � > 0 (this is here sufficient; we
shall, however, postpone this method to (3)) or by a direct proof. (This is actually superfluous
here, if we start with (3), though we shall nevertheless go through the argument here.)

Let bn(x) =
∣∣∣∣ 1
(n − 1)!

x2n

∣∣∣∣ = 1
(n − 1)!

x2n. Then bn(x) > 0, if x �= 0. If so, we have

bn+1(x)
bn(x)

=
x2(n+1)

n!
· (n − 1)!

x2n
=

x2

n
→ 0 < 1 for n → ∞,

for every fixed x ∈ R, and the series is convergent for every x ∈ R, and the radius of convergence
is � = ∞.
The solution is

ϕ(x) =
∞∑

n=1

=
∞∑

n=1

1
(n − 1)!

x2n for x ∈ R.

3) The faculty in the denominator indicates that we must have “something including the exponential
function”. We get by the change of index n �→ n + 1 that

ϕ(x) =
∞∑

n=1

1
(n − 1)!

x2n =
∞∑

n=0

1
n!

x2(n+1) = x2
∞∑

n=0

1
n!

(x2)n

= x2 exp(x2) for x ∈ R.

Larger examples of the power series method



Download free books at BookBooN.com

Calculus 3c-4

 

60  

Addition. This equation can also be solved alternatively by “a dirty trick”. Since differentiation
lowers the degree by 1, and multiplication by x increases the degree by 1, we get for the general term
of the series,

x
d2y

dx2
has degree n − 2 + 1 = n − 1,

2x2 dy

dx
has degree n − 1 + 2 = n + 1,

dy

dx
has degree n − 1 = n − 1,

4xy has degree n + 1 = n + 1.

We see that only the degrees n + 1 and n − 1 with the leap of 2 occur, so the possible power series
solutions must necessarily have the structure

y = c1f(x2) + c2xg(x2) = ϕ(x),

where f and g are functions of t = x2.
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We have ϕ(0) = 0, ϕ′(0) = 0 and ϕ′′(0) = 2, so we guess on a solution of the form

y = ϕ(x) = f(x2) which is even.

For x �= 0 we apply the change of variable t = x2, (monotonous in each of the intervals x < 0 and
x > 0), hence

dy

dx
=

dt

dx

dy

dt
= 2x

dy

dt
,

and

d2y

dx2
=

d

dx

{
2x

dy

dt

}
= 2

dy

dt
+ 4x2 d2

dt2
= 4t

d2y

dt2
+ 2

dy

dt
.

By insertion into (21) we get

0 = x
d2y

dx2
− (2x2 + 1)

dy

dx
− 4xy = x

{
4t

d2y

dt2
+ 2

dy

dt

}
− (2t + 1) · 2xdy

dt
− 4xy

= x

{
4t

d2y

dt2
+ 2

dy

dt
− 4t

dy

dt
− 2

dy

dt
− 4y

}
= 4x

{
t
d2y

dt2
− t

dy

dt
− y

}
.

Since x �= 0, we reduce this equation in the following way

0 = t
d2y

dt2
− t

dy

dt
− y =

{
t
d2y

dt2
+ 1 · dy

dt

}
− dy

dt
− d

dt
(ty) =

d

dt

{
t · dy

dt
− (t + 1)y

}
.

We get by an integration,

t
dy

dt
− (t + 1)y = c2,

hence, because x �= 0 implies that t > 0,

dy

dt
−
(

1 +
1
t

)
y =

c2

t
.

Now
∫ (

1 +
1
t

)
dt = t + ln t for t > 0, so the complete solution for t > 0 is

y = c1te
t + c2te

t

∫
dt

t2et
.

It can be proved that if c2 �= 0, this integral cannot be written as an elementary function, so we can
only integrate the corresponding series term by term (a transcendental function).

If c2 = 0, then we get for t = x2 > 0 that

y = c1te
t = c1x

2 exp(x2) = c1

∞∑
n=0

1
n!

x2n+2 for x �= 0.

The remaining now follows by testing the equation ϕ′′(0) = 2.
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Example 2.5 Given the differential equation

(23) x
d2y

dx2
− 2

dy

dx
− xy = 0, x ∈ R.

1) Prove that if the power series of radius of convergence � > 0,

(24)
∞∑

n=0

anxn, x ∈ ]− �, �[,

is a solution of (23), then

−2a1−(2a2+a0)x−a1x
2+

∞∑
n=4

{n(n−3)an−an−2}xn−1 = 0, x ∈ ]− �, �[.

2) Prove by using the result of (1) that (23) has a solution y = ϕ(x) of the form (24), which satisfies
the conditions ϕ(0) = 1, ϕ′(0) = 0, ϕ′′′(0) = 0, and that this solution is given by

y = ϕ(x) = 1 −
∞∑

p=1

2p − 1
(2p)!

x2p, x ∈ R.

3) Find the sum function of the power series of (2).

(Hint: Notice that

−2p − 1
(2p)!

=
1

(2p)!
− 1

(2p − 1)!
, p ∈ N

)
.

1) We get by insertion of (24) into (23) and addition of some zero terms that

0 =
∞∑

n=2
(n=1)

n(n − 1)anxn−1 −
∞∑

n=1

2nanxn−1 −
∞∑

n=0

anxn+1

=
∞∑

n=1

n(n − 3)anxn−1 −
∞∑

n=2

an−2x
n−1 = −2a1 +

∞∑
n=2

{n(n − 3)an − an−2}xn−1

= −2a1−(2a2+a0)x−a1x
2+

∞∑
n=4

{n(n − 3)an − an−2}xn−1.

2) It follows by the identity theorem from the structure of (1) that

a1 = 0, 2a2 + a0 = 0, a1 = 0, n(n − 3)an − an−2 = 0 for n ≥ 4.

Then by the initial conditions,

ϕ(0) = a0 = 1, ϕ′(0) = a1 = 0, ϕ′′′(0) = 3 · 2 · 1 · a3 = 0,

hence, summing up,

a0 = 1, a1 = 0, a2 = −1
2
, a3 = 0,
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and the recursion formula

n(n − 3)an = an−2 for n ≥ 4.

In particular, a4p−1 = 0 for p ∈ N.

By choosing n = 2p even the recursion formula is reduced to

2p(2p − 3)a2p = a2(p−1) for p ≥ 2 (even for p ≥ 1).

When a0 = 1 and a2 = a2·1 = −1
2

the solution is unique and it suffices just to check a2p = −2p − 1
(2p)!

.

Obviously, a0 = 1 and a1 = −2 − 1
2!

= −1
2
. Finally,

2p(2p − 3)a2p = 2p(2p − 3) ·
{
−2p − 1

(2p)!

}
= − 2p − 3

2(p − 1)!
= a2(p−1), p ≥ 2,

and the recursion formula holds.

Then it follows from the recursion formula,

�2 = lim
p→∞

a2(p−1)

a2p
= lim

p→∞ 2p(2p − 3) = ∞,

so the radius of convergence is � = ∞.

Thus, we have proved that the solution is given by

y = ϕ(x) = 1 −
∞∑

p=1

2p − 1
(2p)!

x2p, x ∈ R.

3) By means of the hint we get

y = ϕ(x) = 1 −
∞∑

p=1

2p − 1
(2p)!

x2p = 1 +
∞∑

p=1

(
1

(2p)!
− 1

(2p − 1)!

)
x2p

=
∞∑

p=0

1
(2p)!

x2p −
∞∑

p=0

1
(2p + 1)!

x2p+2 = coshx − x sinhx.
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Example 2.6 Given the differential equation

(25) (2x2 + 1)
d2y

dx2
+ 8x

dy

dx
+ 4y = 0, x ∈ R.

1) Prove that if the power series of radius of convergence � > 0,

(26)
∞∑

n=0

anxn, x ∈ ]− �, �[,

is a solution of (25), then

an+2 + 2an = 0, n ∈ N0.

2) Prove that (25) has a solution y = ϕ(x) of the form (26), satisfying the conditions

ϕ(0) = 0, ϕ′(0) = 1.

3) Find the sum function of the power series of (2).

4) Find a solution of (25) through the line element (0, 0, 2).

The example can be treated in several ways. The main variant is of course the power series method.

1) By insertion of

y =
∞∑

n=0

anxn, y′ =
∞∑

n=1

nanxn−1, y′′ =
∞∑

n=2

n(n − 1)anxn−2,

and addition of some zero terms we get

0 = (2x2 + 1)
d2y

dx2
+ 8x

dy

dx
+ 4y = (2x2+1)

∞∑
n=2

n(n−1)anxn−2+8x
∞∑

n=1

nanxn−1+4
∞∑

n=0

anxn

=
∞∑

n=2
(n=0)

2n(n − 1)anxn +
∞∑

n=2

n(n − 1)anxn−2 +
∞∑

n=1
(n=0)

8anxn +
∞∑

n=0

4anxn

=
∞∑

n=0

{2n2−2n+8n+4}anxn+
∞∑

n=0

(n+2)(n+1)an+2x
n

=
∞∑

n=0

{2(n2+3n+ 2)an+(n+2)(n+1)an+2}xn =
∞∑

n=0

(n + 2)(n + 1){2an + an+2}xn.

Since (n + 2)(n + 1) �= 0 for n ∈ N0, it follows from the identity theorem that we have the
recursion formula

an+2 + 2an = 0 for n ∈ N0.
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2) Then we get from ϕ(0) = 0 that a0 = 0, and from ϕ′(0) = 1 that a1 = 1.

The recursion formula has a leap of 2 in the indices, so we conclude by induction that a2n = 0 for
every n ∈ N0.

For n = 2p + 1, p ∈ N0, odd the recursion formula becomes

a2(p+1)+1 = −2a2p+1.

The first terms are

a1 = 1, a3 = −2, a5 = (−2)2,

so we set up the hypothesis a2p+1 = (−2)p.

Assume this hypothesis. Then by the recursion formula,

a2(p+1)+1 = −2a2p+1 = −2 · (−2)p = (−2)p+1,

which is the hypothesis with p replaced by p + 1. Then the hypothesis follows by induction, i.e.
the bootstrap method.
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Alternatively it follows by recursion that

a2p+1 = −2a2(p−1)+1 = (−2)2a2(p−2)+1 = · · · = (−2)pa1 = (−2)p.

The formal series becomes

ϕ(x) =
∞∑

p=0

a2p+1x
2p+1 =

∞∑
p=0

(−2)px2p+1 = x

∞∑
p=0

(−2x2)p.

This is a quotient series of quotient q = −2x2, so the condition of convergence is | − 2x2| < 1,

i.e. |x| <
1√
2
, and we get � =

1√
2
.

3) The quotient is q = −2x2, hence the sum function is in ]− �, �[ given by

ϕ(x) = x

∞∑
p=0

qp =
x

1 − q
=

x

1 + 2x2
, for |x| <

1√
2
.

4) The solution through the line element (0, 0, 2) satisfies ψ(0) = 0 and ψ′(0) = 2 = 2 · ϕ′(0). The
equation is linear, and since ψ(0) = 2 · ϕ(0), the solution is

ψ(x) = 2ϕ(x) =
2x

1 + 2x2
, |x| <

1√
2
.

Remark 2.3 We have so far only found the solution ϕ(x) =
x

1 + 2x2
in the interval |x| <

1√
2
. It is,

however, immediately seen that the function is defined for every x ∈ R. By a simple test it is also a
solution for x ∈ R. We first calculate

ϕ′(x) =
1

1 + 2x2
− 4x2 + (2 − 2)

(1 + 2x2)2
=

1
1 + 2x2

− 2
1 + 2x2

+
2

(1 + 2x2)2
= − 1

1 + 2x2
+

2
(1 + 2x2)2

and

ϕ′′(x) =
4x

(1 + 2x2)2
− 16x

(1 + 2x2)3
.

We get by insertion

(2x2 + 1)ϕ′′(x) + 8xϕ′(x) + 4ϕ(x) =
4x

1 + 2x2
− 16x

(1 + 2x2)2
− 8x

1 + 2x2
+

16x
(1 + 2x2)2

+
4x

1 + 2x2
= 0.

It follows from the test that ϕ(x) =
x

1 + 2x2
is a solution of (25) in R.

Here we have produced the full argument. One can, however, obtain this result without any calculation
at all. In fact, according to the previously shown results ϕ fulfils the differential equation in the interval

|x| <
1√
2
. Then note that since ϕ(x) is a rational fractional function, defined in R, the same is true

for ϕ′(x) and ϕ′′(x). When these fractional functions are inserted into (25), these inserted functions

“cannot distinguish between if we are inside or outside the interval |x| <
1√
2
”. Since the equation is

satisfied inside the interval, it must also be fulfilled outside the interval, and we conclude that ϕ(x) is
a solution in R.
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Remark 2.4 Again we can solve the equation directly by an inspection. In fact, we get by a small
reformulation of (25)

0 = (2x2 + 1)
d2y

dx2
+ 8x

dy

dx
+ 4y =

{
(2x2+1)

d2y

dx2
+ 4x

dy

dx

}
+
{

4x
dy

dx
+ 4y

}

=
{

(2x2 + 1) · d

dx

(
dy

dx

)
+

d

dx
(2x2 + 1) · dy

dx

}
+
{

4x · dy

dx
+

d

dx
(4x) · y

}

=
d

dx

{
(2x2 + 1)

dy

dx
+ 4xy

}
=

d

dx

{
(2x2 + 1)

dy

dx
+

d

dx
(2x2 + 1) · y

}

=
d2

dx2
{(2x2 + 1)y}.

Then by two successive integrations

(2x2 + 1)y = c1 + c2x,

and the complete solution is

y = c1 · 1
2x2 + 1

+ c2 · x

2x2 + 1
, x ∈ R.

The rest is easy.
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Example 2.7 Given the differential equation

(27) x
d2y

dx2
+ (x + 1)

dy

dx
+ 2y = 0, x ∈ R.

1) Prove that if the power series of radius of convergence � > 0,

(28)
∞∑

n=0

anxn, x ∈ ]− �, �[,

is a solution of (27), then

2a0+a1+
∞∑

n=1

[(n+1)2an+1+(n+2)an]xn = 0, x ∈ ]− �, �[.

(In some of the variants we get instead

∞∑
n=0

[(n + 1)2an+1 + (n + 2)an]xn = 0, x ∈ ]− �, �[.

]

2) Prove that (27) has a solution y = ϕ(x) of the form (28), satisfying the conditions

ϕ(0) = 1, ϕ′(0) = −2.

3) Find the sum function of the power series of (2).

1) We insert the power series (28) into (27) and add some zero terms. Hereby,

0 =
∞∑

n=2
(n=1)

n(n−1)anxn−1+
∞∑

n=1
(n=0)

nanxn+
∞∑

n=1

nanxn−1+
∞∑

n=0

2anxn

=
∞∑

n=1

n2anxn−1 +
∞∑

n=0

(n + 2)anxn =
∞∑

n=0

(n + 1)2an+1x
n +

∞∑
n=0

(n + 2)anxn

=
∞∑

n=0

{(n + 1)2an+1 + (n + 2)an}xn.

2) We get from the identity theorem the recursion formula

(n + 1)2an+1 + (n + 2)an = 0, n ∈ N0,

which is equivalent to

n2an + (n + 1)an−1 = 0, n ∈ N.

From the latter expression we get by recursion

an = −n+1
n2

an−1 = (−1)2
n+1
n2

· n

(n−1)2
an−2 = · · · = (−1)n n+1

n2
· n

(n−1)2
· · · 3

22
· 2
12

a0

= (−1)n · n + 1
n!

a0, n ∈ N.
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We see that this formula also holds for n = 0.

We get from the initial conditions that

ϕ(0) = a0 = 1 and ϕ′(0) = a1 = (−1)1
1+1
1!

a0 = −2a0 = −2.

The formal power series solutions is

y =
∞∑

n=0

(−1)n n + 1
n!

xn =
∞∑

n=0

(−x)n

n!
+

∞∑
n=1

(−x)n

(n − 1)!
= (1 − x)

∞∑
n=0

(−x)n

n!
= (1 − x)e−x,

where we have recognized the exponential series with � = ∞.

Alternatively we use the quotient criterion for x �= 0:∣∣∣∣an+1x
n+1

anxn

∣∣∣∣ =
∣∣∣∣− (n + 2)x

(n + 1)2

∣∣∣∣→ 0 for n → ∞

for every fixed x ∈ R, so � = ∞.

Remark 2.5 This equation can also be solved alternatively by some manipulation. It is, however,
more tricky here. By some trial and error we see that the right idea must be to multiply the equation
by 1−x, then add something and immediately subtract it again. We introduce in this way a singularity
at x = 1, which ought to be discussed as well. We shall, however, decline from doing this here.

We get by using the sketch above,

0 = x(1 − x)
d2y

dx2
+ (1 − x2)

dy

dx
+ (2 − 2x)y

= x(1−x)
d2y

dx2
+ (x−x2)

dy

dx
− x · y +

{
(1−x)

dy

dx
+ (2−x)y

}

= x

{
(1−x)

d2y

dx2
+ (1−x)

dy

dx
− y

}
+
{

(1−x)
dy

dx
+ (2−x)y

}
.

Then notice that

d

dx

{
(1−x)

dy

dx
+ (2−x)y

}
= (1−x)

d2y

dx2
+ (1−x)

dy

dx
− y,

so the equation can be rewritten as

0 = x · d

dx

{
(1−x)

dy

dx
+ (2−x)

dy

dx
+ (2−x)y

}
+ 1 ·

{
(1−x)

dy

dx
+ (2−x)y

}

=
d

dx

{
x

[
(1 − x)

dy

dx
+ (2 − x)y

]}
=

d

dx

{
x(1−x)2e−x

[
ex

1−x

dy

dx
+

2−x

(1−x)2
exy

]}
.

Since
d

dx

(
ex

1 − x

)
=

2 − x

(1 − x)2
ex, this expression can be further reduced to

d

dx

{
x(1 − x)2e−x d

dx

(
ex

1 − x
· y
)}

= 0,
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hence by an integration,

x(1−x)2e−x d

dx

(
ex

1−x
y

)
= c2, dvs.

d

dx

(
ex

1−x
y

)
= c2 · ex

x(1−x)2
.

By another integration, followed by a multiplication by (1 − x)e−x, we get the complete solution

y = c1(1 − x)e−x + c2(1 − x)e−x

∫
ex

x(1 − x)2
dx.

We have a power series expansion of the first term from x = 0. This does not exist for the second
term because of the factor x in the denominator of the integrand. On the other hand, the singularity
at x = 1 is removed, because the singularity of the integrand of second order (in the denominator) by
integration becomes a singularity of first order, and this is cancelled by the factor 1 − x, which has a
zero of first order at x = 1. ♦
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Example 2.8 Given the differential equation

(29) x(x2 + 1)
d2y

dx2
+ (4x2 + 2)

dy

dx
+ 2xy = 0, x ∈ R.

1) Prove that if the power series of radius of convergence � > 0,

(30)
∞∑

n=0

anxn, x ∈ ]− �, �[,

is a solution of (29), then

2a1+(2a0+6a2)x+(6a1+12a2)x2+
∞∑

n=2

(n+2)[(n+3)an+2+(n+1)an]xn+1 = 0

for x ∈ ]− �, �[.

2) Prove that (29) has a solution y = ϕ(x) of the form (30), satisfying

ϕ(0) = 1, ϕ′(0) = 0.

3) Find the sum function of the power series solution of (2).

1) By insertion of the usual formal series

y =
∞∑

n=0

anxn, y′ =
∞∑

n=1

nanxn−1, y′′ =
∞∑

n=2

n(n−1)anxn−2,

and by addition of some zero terms, we get

0 = (x3+x)
∞∑

n=2

n(n−1)anxn−2+(4x2+2)
∞∑

n=1

nanx
n−1+2x

∞∑
n=0

anxn

=
∞∑

n=2
(n=0)

n(n−1)anxn+1 +
∞∑

n=2
(n=1)

n(n−1)anxn−1

+
∞∑

n=1
(n=0)

4nanxn+1 +
∞∑

n=1

2nanxn−1 +
∞∑

n=0

2anxn+1

=
∞∑

n=0

{n(n − 1) + 4n + 2}anxn+1 +
∞∑

n=1

{n(n − 1) + 2n}anxn−1

=
∞∑

n=0

(n2 + 3n + 2)anxn+1 +
∞∑

n=1

(n2 + n)anxn−1

=
∞∑

n=0

(n + 1)(n + 2)anxn+1 +
∞∑

n=1

n(n + 1)anxn−1

=
∞∑

n=0

(n + 1)(n + 2)anxn+1 +
∞∑

n=−1

(n + 2)(n + 3)an+2x
n+1

= 2a1 +
∞∑

n=0

{(n + 3)an+3 + (n + 1)an}xn+1.
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Remark 2.6 If we here remove the terms for n = 0 and n = 1, we get precisely the desired form.
The following investigation becomes, however, more easy, if we keep the equivalent form, derived
here, which is obtained by adding zero terms.

2) It follows from the identity theorem that a1 = 0. Since n + 2 �= 0 for n ≥ 0, we derive the
recursion formula

(n + 3)an+2 + (n + 1)an = 0, for n ≥ 0.

The recursion formula has a leap of 2 in the indices. Since already a1 = 0, we conclude by induction
that a2n+1 = 0 for all odd indices.

For even indices the recursion formula is written

(2n + 3)a2(n+1) + (2n + 1)a2n = 0, for n ≥ 0,

hence by recursion,

a2(n+1) = −2n+1
2n+3

a2n = (−1)n+1 · 2n+1
2n+3

· 2n−1
2n+1

· · · 1
3

a0 =
(−1)n+1

2n + 3
a0.

Then by a change of index,

a2n =
(−1)n

2n + 1
a0 =

(−1)n

2n + 1
, n ∈ N, og for n = 0.

The formal power series solution is given by

y =
∞∑

n=0

(−1)n

2n + 1
x2n.

The radius of convergence is � = 1, so the series is convergent for ]− 1, 1[.

3) If x �= 0, then

y =
1
x

∞∑
n=0

(−1)n

2n + 1
x2n+1 =

Arctan x

x
,

and we see that the sum function is

y =

⎧⎪⎨
⎪⎩

1
x

Arctan x for 0 < |x| < 1,

1 for x = 0.
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Remark 2.7 Again the example can be treated alternatively with some manipulation,

0 = x(x2 + 1)
d2y

dx2
+ (4x2 + 2)

dy

dx
+ 2xy

= (x2 + 1)
{

x
d2y

dx2
+ 1 · dy

dx

}
+ (3x2 + 1)

dy

dx
+ 2xy

= (x2+1)
d

dx

{
x

dy

dx
+ 1 · y

}
−(x2+1)

dy

dx
+ (3x2+1)

dy

dx
+ 2xy

= (x2 + 1)
d

dx

{
d

dx
(xy)

}
+ 2x2 dy

dx
+ 2xy

= (x2 + 1)
d

dx

{
d

dx
(xy)

}
+ 2x

{
x

dy

dx
+ 1 · y

}

= (x2 + 1)
d

dx

{
d

dx
(xy)

}
+

d

dx
(x2 + 1) · d

dx
(xy)

=
d

dx

{
(x2 + 1)

d

dx
(xy)

}
,

so (29) can be written

(31)
d

dx

{
(x2 + 1)

d

dx
(xy)

}
= 0.

If we integrate (31), then

(x2 + 1)
d

dx
(xy) = c2, i.e.

d

dx
(xy) =

c2

x2 + 1
.

Then by another integration,

xy = c1 + c2 Arctan x,

hence

y =
c1

x
+ c2

Arctan x

x
for x �= 0.

Since
Arctan x

x
→ 1 for x → 0, and

Arctan x

x
is even and differentiable with ϕ′(0) = 0, and since

1
x

cannot be extended to 0, the answer of (2) becomes

y = ϕ(x) =
Arctan x

x
=

∞∑
n=0

(−1)n

2n + 1
x2n, x ∈ ]− 1, 1[,

where
Arctan x

x
is interpreted as 1 for x = 0.
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Example 2.9 Given the differential equation

(32) (x2 + x)
d2y

dx2
+ (3x + 2)

dy

dx
+ y = 0, x ∈ R.

1) Prove that if the power series of radius of convergence � > 0,

(33)
∞∑

n=0

anxn, x ∈ ]− �, �[,

is a solution of (32), then

a0+2a1+(4a1+6a2)x+
∞∑

n=2

(n+1)[(n+2)an+1+(n+1)an]xn = 0,

for x ∈ ]− �, �[.

2) Prove that (32) has a solution y = ϕ(x) of the form (33), satisfying the condition ϕ(0) = 1.

3) Find the sum function for the power series of (2).

Remark 2.8 We first demonstrate the “untraditional” solution, which shows that it pays off just to
think about the problem before one starts on some standard procedure.

We get by some small rearrangements of the equation

0 = (x2 + x)
d2y

dx2
+ (3x + 2)

dy

dx
+ y =

{
(x2+x)

d2y

dx2
+ (2x+1)

dy

dx

}
+
{

(x+1)
dy

dx
+ 1 · y

}

=
d

dx

{
(x2 + x)

dy

dx

}
+

d

dx
{(x + 1)y} =

d

dx

{
(x2 + x)

dy

dx
+ (x + 1)y

}

=
d

dx

{
(x + 1)

[
x

dy

dx
+ 1 · y

]}
=

d

dx

{
(x + 1)

d

dx
(xy)

}
.

Hence by an integration,

(x + 1)
d

dx
(xy) = c1, i.e.

d

dx
(xy) =

c1

1 + x
for x �= −1.

Then by another integration,

x · y = c1 ln |1 + x| + c2.

If we also assume that x �= 0, then we get the complete solution

y = c1
ln |1 + x|

x
+ c2 · 1

x
for x �= 0, −1.

The former function can actually be extended to x = 0, because the power series expansion for
0 < |x| < 1 is

ln(1 + x)
x

=
1
x

∞∑
n=1

(−1)n−1

n
xn =

∞∑
n=1

(−1)n−1

n
xn−1 =

∞∑
n=0

(−1)n

n + 1
xn.

When x → 0 we obtain the value 1.
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Then we apply the standard method.

1) When we insert the formal power series

y =
∞∑

n=0

anxn, y′ =
∞∑

n=1

nanxn−1, y′′ =
∞∑

n=2

n(n−1)anxn−2,

and add some zero terms, we get

0 = (x2 + x)
d2y

dx2
+ (3x + 2)

dy

dx
+ y

= (x2+x)
∞∑

n=2

n(n−1)anxn−2+(3x+2)
∞∑

n=1

nanxn−1+
∞∑

n=0

anxn

=
∞∑

n=2
(n=0)

n(n − 1)anxn +
∞∑

n=2
(n=1)

n(n − 1)anxn−1 +
∞∑

n=1
(n=0)

3nanxn +
∞∑

n=1

2nanxn−1 +
∞∑

n=0

anxn

=
∞∑

n=0

{n(n − 1) + 3n + 1}anxn +
∞∑

n=1

{n(n − 1) + 2n}anxn−1

=
∞∑

n=0

(n + 1)2anxn +
∞∑

n=1

n(n + 1)anxn−1

=
∞∑

n=0

(n + 1)2anxn +
∞∑

n=0

(n + 1)(n + 2)an+1x
n

=
∞∑

n=0

(n + 1){(n + 1)an + (n + 2)an+1}xn.

When we remove the first two terms, we get the desired form. We shall, however, here keep the
form above, because it will be more convenient in the following.

2) The series above is a power series expansion of 0. This is by the identity theorem unique, hence
we get by identification of the coefficients the following recursion formula

(n + 1){(n + 1)an + (n + 2)an+1} = 0 for n ∈ N0.

Now, n + 1 �= 0 for n ∈ N0, so this is immediately reduced to

(n + 2)an+1 = −(n + 1)an, n ∈ N0.

This difference equation can be solved in three different ways.

a) The divine inspiration. If we introduce

bn = (−1)n(n + 1)an,

then

bn+1 = (−1)n+1(n + 2)an+1 = (−1)n(n + 1)an = bn, n ∈ N,

and thus

(−1)n(n + 1)an = bn = bn−1 = · · · = b0 = 1 · a0 = ϕ(0) = 1.
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We then get

an =
(−1)n

n + 1
for n ∈ N0.

b) Recursion. It follows from

(n + 1)an = −nan−1 that an = − n

n + 1
an−1, n ∈ N.

By repeating this formula with n replaced by n − 1 etc., we get

an =
(
− n

n + 1

)(
−n − 1

n

)
· · ·
(
−1

2

)
a0 =

(−1)n

n + 1
a0 =

(−1)n

n + 1
.
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c) Induction. Consider again the recursion formula in the form

an = − n

n + 1
an−1, n ∈ N, med a0 = 1.

If n = 1, then a1 = −1
2
.

If n = 2, then a2 = −2
3

(
−1

2

)
=

1
3
.

If n = 3, then a3 = −3
4
· 1
3

= −1
4
.

This gives us the hint of the structure

an =
(−1)n

n + 1
, n ∈ N0.

Assume that this formula holds for some n ∈ N0. This is at least true for n = 0, 1, 2, 3.
Then we get by this assumption that

an+1 = −n + 1
n + 2

an = −n + 1
n + 2

· (−1)n

n + 1
=

(−1)n+1

n + 2
,

which is the assumption of induction with n replaced by n + 1. Hence

an =
(−1)n

n + 1
, for n ∈ N0.

We see that no matter the choice of method of the solution of the recursion formula, the formal
power series solution of the problem becomes

ϕ(x) =
∞∑

n=0

anxn =
∞∑

n=0

(−1)n

n + 1
xn =

∞∑
n=1

(−1)n−1

n
xn−1.

The radius of convergence can be found by the criterion of roots,

n

√∣∣∣∣ (−1)n

n + 1
xn

∣∣∣∣ = |x|
n
√

n + 1
→ |x| < 1 for n → ∞,

hence � = 1.

3) The formal power series can also be written

ϕ(x) =
∞∑

n=1

(−1)n−1

n
xn−1,

so we are very close to a logarithmic series. If |x| < 1, then

ln(1 + x) =
∞∑

n=1

(−1)n−1

n
xn = x · ϕ(x),

hence � = 1, and

ϕ(x) =

⎧⎪⎨
⎪⎩

ln(1 + x)
x

for 0 < |x| < 1,

1 for x = 0.
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Example 2.10 Given the differential equation

(34) x2 d2y

dx2
− 4x

dy

dx
+ (x2 + 6)y = 0, x ∈ R.

1) Prove that if the power series of radius of convergence � > 0,

(35)
∞∑

n=0

anxn, x ∈ ]− �, �[,

is a solution of (34), then

6a0+2a1x+a0x
2+a1x

3+
∞∑

n=4

{(n−2)(n−3)an+an−2}xn = 0,

for x ∈ ]− �, �[.

2) Prove that (34) has a solution y = ϕ(x) of the form (35), satisfying the initial conditions

ϕ(0) = 0, ϕ′(0) = 0, ϕ′′(0) = 2, ϕ′′′(0) = 0.

3) Find the sum function of the power series of (2).

1) When we insert the formal series

y =
∞∑

n=0

anxn,
dy

dx
=

∞∑
n=1

nanxn−1,
d2y

dx2
=

∞∑
n=2

n(n−1)anxn−2,

and add some zero terms, we get

0 =
∞∑

n=2
(n=0)

n(n−1)anxn−
∞∑

n=1
(n=0)

4nanxn+
∞∑

n=0

6anxn+
∞∑

n=0

anxn+2

=
∞∑

n=0

{n2 − 5n + 6}anxn +
∞∑

n=2

an−2x
n

= 6a0 + 2a1x +
∞∑

n=2

{(n−2)(n−3)an+an−2}xn.

Then by removing two terms we get

0 = 6a0+2a1x+a0x
2+a1x

3+
∞∑

n=4

{(n−2)(n−3)an+an−2}xn,

and we can in the following argue on both expressions. We shall here choose the given version
from the example.

Remark 2.9 Because possible singular points are given by x2 = 0, i.e. x = 0, the possible radii
of convergence are � ∈ {0,∞}.
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2) It follows from the initial conditions,

ϕ(0) = a0 = 0, ϕ′(0) = 0 = a1,

ϕ′′(0) = 2!a2 = 2, ϕ′′′(0) = 3!a3 = 0,

thus

a0 = 0, a1 = 0, a2 = 1, a3 = 0.

Then by the identity theorem,

6a0 = 0, 2a1 = 0, a0 = 0, a1 = 0,

and

(n − 2)(n − 3)an + an−2 = 0, for n ≥ 4,

which fortunately is in agreement with a0 = 0 and a1 = 0 found previously.

If n ≥ 4, then (n − 2)(n − 3) > 0, and the recursion formula is rewritten as

an = − 1
(n − 2)(n − 3)

an−2, for n ≥ 4.
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There is here a leap of 2 in the indices, so we shall divide into the two cases of odd and even
indices.

From a3 = 0 follows by induction that a2p+1 = 0 for all odd indices ≥ 3, thus for all odd indices,
because also a1 = 0.

For even indices we write n = 2p ≥ 4, which is satisfied for p ≥ 2,

a2p = − 1
(2p − 2)(2p − 3)

a2(p−1), p ≥ 2.

In order to find some common pattern we try the first values,

a2 = 1, a4 = − 1
2 · 1 , a6 = +

1
4 · 3 · 2 · 1 =

1
4!

.

These values inspires us to the hypothesis of induction

a2p =
(−1)p+1

(2p − 2)!
, i.e. a2(p−1) =

(−1)p

(2p − 4)!
.

a) By the first values it is seen that the hypothesis holds for p = 1, 2, 3.
b) Induction. Assume that

a2(p−1) =
(−1)p

(2p − 4)!
for some p ≥ 2.

Then by the recursion formula

a2p = − 1
(2p − 2)(2p − 3)

a2(p−1) = − 1
(2p − 2)(2p − 3)

· (−1)p

(2p − 4)!
=

(−1)p+1

(2p − 2)!
,

which is precisely the hypothesis of induction for p.

Then we get the formal power series solution,

y =
∞∑

n=0

anxn =
∞∑

p=1

a2px
2p =

∞∑
n=1

(−1)n+1

(2n − 2)!
x2n.

Radius of convergence.

The series is of course convergent for x = 0.

If x �= 0, then bn =
∣∣∣∣ (−1)n+1

(2n − 2)!
x2n

∣∣∣∣ = x2n

(2n − 2)!
> 0.

We get by the criterion of quotients,

bn+1

bn
=

x2n+2

(2n)!
· (2n − 2)!

x2n
=

x2

2n(2n − 1)
→ 0 < 1 for n → ∞

for every fixed x ∈ R, hence � = ∞, and the interval of convergence is R,

y =
∞∑

n=1

(−1)n+1

(2n − 2)!
x2n for x ∈ R.
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3) The sum function is

y =
∞∑

n=1

(−1)n+1

(2n − 2)!
x2n =

∞∑
n=0

(−1)n+2

(2n)!
x2n+2 = x2

∞∑
n=0

(−1)n

(2n)!
x2n = x2 cos x.

Since we already know that the cosine series is convergent in R, we might from the identification
of the sum function immediately obtain the interval of convergence.

Remark 2.10 An alternative solution method is the following: The not so obvious trick is for x �= 0
to divide by x4. Then we get by some manipulation that the equation can be rewritten in the following
way,

0 =
1
x2

d2y

dx2
− 2

x2

dy

dx
− 2

x3

dy

dx
+

1
x2

y +
6
x4

y =
d

dx

{
1
x2

dy

dx

}
− d

dx

{
2
x3

y

}
+

y

x2

=
d

dx

{
1
x2

dy

dx
+

d

dx

(
1
x2

)
· y
}

+
y

x2
=

d2

dx2

{ y

x2

}
+

y

x2
.
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If we put z =
y

x2
, the equation is reduced to

d2z

dx2
+ z = 0,

the complete solution of which is

z =
y

x2
= c1 cos x + c2 sin x,

hence

y = c1x
2 cos x + c2x

2 sin x, for x �= 0.

Example 2.11 Given the differential equation

(36) x2 d2y

dx2
− 2x

dy

dx
+ (x2 + 2)y = 0, x ∈ R.

1) Prove that if the power series of radius of convergence � > 0,

(37)
∞∑

n=0

anxn, x ∈ ]− �, �[,

is a solution of (36), then

2a0 + a0x
2 +

∞∑
n=3

[(n−1)(n−2)an+an−2]xn = 0, x ∈ ]− �, �[.

2) Prove that (36) has a y = ϕ(x) of the form (37), satisfying the initial conditions

ϕ(0) = 0, ϕ′(0) = 0, ϕ′′(0) = 2.

3) Find the sum function of the power series of (2) expressed by elementary functions.

1) When we insert the formal power series

y =
∞∑

n=0

anxn,
dy

dx
=

∞∑
n=1

nanxn−1,
d2y

dx2
=

∞∑
n=2

n(n − 1)anxn−2,

into (36), read from the right hand side to the left hand side, we get by adding some zero terms,

0 = x2
∞∑

n=2

n(n−1)xn−2−2x
∞∑

n=1

nanxn−1+ (x2+2)
∞∑

n=0

anxn

=
∞∑

n=2
(n=0)

n(n−1)anx2−
∞∑

n=1
(n=0)

2nanxn+
∞∑

n=0

2anxn+
∞∑

n=0

anxn+2

=
∞∑

n=0

{n2 − n − 2n + 2}anxn +
∞∑

n=2

an−2x
n

=
∞∑

n=0

(n − 1)(n − 2)anxn +
∞∑

n=2

an−2x
n

= 2a0 + a0x
2 +

∞∑
n=3

{(n−1)(n−2)an+an−2}xn,
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and we have proved that (37) necessarily must fulfil

(38) 2a0 + a0x
2 +

∞∑
n=3

{(n−1)(n−2)an+an−2}xn = 0.

2) It follows from the identity theorem that a0 = 0 and that the recursion formula becomes

(n − 1)(n − 2)an + an−2 = 0 for n ≥ 3

It is given that

ϕ(0) = a0 = 0, (in agreement with the identity theorem),

ϕ′(0) = 1 · a1 = 0, i.e. a1 = 0,

ϕ′′(0) = 2!a2 = 2, i.e. a2 = 1.

The recursion formula has a leap of 2 in the indices, so it follows from a1 = 0 by induction that
a2m+1 = 0, m ∈ N0.

If n = 2m is even, the recursion formula is written

(39) (2m − 1)(2m − 2)a2m = −a2(m−1) for m ≥ 2.

(Note that m �= 1).

When we multiply by (−1)m−1(2m − 3)! �= 0, we get

bm := (−1)m−1(2m − 1)!a2m = (−1)m−2(2m − 3)!a2(m−1) = bm−1,

thus

bm = (−1)m−1(2m − 1)!a2m = · · · = b1 = (−1)0 · 1!a2 = 1,

and hence

a2n =
(−1)n−1

(2n − 1)!
, n ∈ N.

Alternatively we get by recursion of (39),

a2m = − 1
(2m − 1)(2m − 2)

a2(m−1) = (−1)2
1

(2m − 1)(2m − 2)(2m − 3)(2m − 4)
a2(m−2)

= · · · =
(−1)m−1

(2m − 1)(2m − 2) · · · 3 · 2 a2 =
(−1)m−1

(2m − 1)!
, m ∈ N.

Summing up we obtain the formal power series solution

y =
∞∑

n=1

a2nx2n =
∞∑

n=1

(−1)n−1

(2n − 1)!
x2n.
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If x �= 0, then an(x) =
∣∣∣∣ (−1)n−1

(2n − 1)!
x2n

∣∣∣∣ =
x2n

(2n − 1)!
> 0. We get by the criterion of quotients

for x �= 0 that

an+1(x)
an(x)

=
x2n+2

(2n+1)!
· (2n−1)!

x2n
=

x2

(2n+1)2n
→ 0 for n → ∞.

Hence we conclude by the criterion of quotiens that the series is convergent for every x ∈ R, so
the interval of convergence is R.

3) Using a known power series expansion we get the sum function

y =
∞∑

n=1

(−1)n−1

(2n−1)!
x2n = x

∞∑
n=0

(−1)n

(2n+1)!
x2n+1 = x sin x, x ∈ R.

Remark 2.11 One can also solve this equation by a small trick. Since we have a singular point at
x = 0, and since x = 0 clearly gives y(0) = 0 for every solution, it seems natural to put y = xz and
then derive some differential equation in z. From

dy

dx
= x

dz

dx
+ z og

d2y

dx2
= x

d2z

dx2
+ 2

dz

dx
,

follows by insertion that

0 = x2 d2y

dx2
− 2x

dy

dx
+ (x2 + 2)y =

{
x3 d2z

dx2
+2x2 dz

dx

}
−
{

2x2 dz

dx
+2xz

}
+
{
x3z+2xz

}
= x3 d2z

dx2
+ x3z = x3

{
d2z

dx2
+ z

}
.

Thus, we get the equation when x �= 0,

d2z

dx2
+ z = 0,

the complete solution of which is

z = c1 sin x + c2 cos x.

Therefore, if x �= 0 then the complete solution of the original equation is

y = c1x sinx + c2x cos x, c1, c2 arbitrære.

Remark 2.12 If we put y1(x) = x sinx, then both y1(0) = 0 and y′
1(0) = 0. This fact will cause some

extension problems at x = 0, where we cannot conclude anything from the existence and uniqueness
theorem. We shall not go further into this difficult question.
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Example 2.12 1) Prove that if y(x) =
∑∞

n=0 anxn is a power series solution of

x
d2y

dx2
− dy

dx
− 4x3y = 0,

then we have the recursion formula

n(n − 2)an = 4an−4 for n ≥ 4.

2) Find the power series solution, which satisfies the conditions y(0) = 1 and y′′(0) = 0, and find the
interval of convergence of the series.

3) Does there exist a power series solution y(x), for which y′(0) = 1?

1) When we insert the formal series

y =
∞∑

n=0

anxn, y′ =
∞∑

n=1

nanxn−1, y′′ =
∞∑

n=2

n(n − 1)anxn−2
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into the differential equation, we get

0 = x
d2y

dx2
− dy

dx
− 4x3y

= x
∞∑

n=2

n(n−1)anxn−2−
∞∑

n=1

nanxn−1−4x3
∞∑

n=0

anxn

=
∞∑

n=2

n(n−1)anxn−1−a1−
∞∑

n=2

nanxn−1−
∞∑

n=0

4anxn+3

= −a1+
∞∑

n=2
(n=3)

n(n−2)anxn−1−
∞∑

n=4

4an−4x
n−1

= −a1+3a3x
2+

∞∑
n=4

{n(n−2)an−4an−4}xn−1.

Then by the identity theorem.

(40) a1 = 0 and a3 = 0,

and the recursion formula (with a leap of 4 in the indices)

(41) n(n − 2)an = 4an−4 for n ≥ 4.

2) We get by induction from (40) and (41) that a4n+1 = 0 and a4n+3 = 0, hence

a2n+1 = 0 for n ∈ N0.

If y(0) = a0 = 1 and y′′(0) = 2!a2 = 0, thus a2 = 0, it follows again by induction that

a4n+2 = 0 for n ∈ N0.

The remaining case is an = a4m, i.e. n = 4m, m ∈ N0, where a0 = 1. We write in this case (41) in
the form

4m(4m − 2)a4m = 4a4m−4, m ≥ 1,

which is rewritten as

(42) 2m(2m − 1)a4m = a4(m−1), m ≥ 1.

We can solve this recursion formula in several ways, of which we shall only demonstrate a couple.

a) If (42) is multiplied by (2m − 2)! = (2(m − 1))!, then

(2m)!a4m = {2(m − 1)}!a4(m−1) = · · · = {2 · 0}!a0 = 1,

hence

a4m =
1

(2m)!
, m ∈ N0.
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b) We get by recursion from (42) that

a4m = a2·2m =
1

2m(2m − 1)
· a2·(2m−1) =

1
2m(2m − 1)(2m − 2)(2m − 3)

a2·(2,−4)

= · · · =
1

2m(2m − 1) · · · 2 · 1 a2·0 =
1

(2m)!
, m ∈ N0.

As a conclusion we have obtained the formal power series solution

y =
∞∑

m=0

a4mx4m =
∞∑

m=0

1
(2n)!

(x2)2m = cosh(x2).

We recognize the series as the series of cosh(x2) of radius of convergence � = ∞, so the interval
of convergence is R.

3) If some power series solution existed with y′(0) = 1, then a1 = 1, which violates (40). Hence, we
cannot have any power series solution of the equation, for which y′(0) = 1.

Alternatively, put t = 0 into the differential equation,

0 = 0 · y′′(0) − y′(0) − 4 · 03y(0) = −y′(0), dvs. y′(0) = 0.

It is immediately seen that one cannot have any solution for which y′(0) = 1 whatsoever.

Remark 2.13 By using a general solution formula, a linearly independent solution is given by

y2(x) = cosh(x2)
∫

1
cosh2(x2)

exp
(∫

1
x

dx

)
dx = cosh(x2)

∫
x

cosh2(x2)
dx

=
1
2

cosh(x2)
∫

u=x2

du

cosh2(u)
=

1
2

cosh(x2) tanh(x2) =
1
2

sinh(x2).

The complete solution is

y = c1 cosh(x2) + c2 sinh(x2), x ∈ R, c1, c2 arbitrære.
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Example 2.13 Consider the differential equation

d2y

dx2
+ x2y = 0.

Given (and shall not be proved) that there exists a power series solution of the form
∑∞

n=0 anxn.

1) Find a recursion formula for the coefficients an of the power series solution (one shall not solve
the equation of recursion).

2) Find a0, a1, a2, a3 and a4 for the power series solution for which we have the initial conditions
y(0) = 1 and y′(0) = 0.

1) By inserting the formal series

y =
∞∑

n=0

anxn, og
d2y

dx2
=

∞∑
n=2

n(n − 1)anxn−2,

we get

0 =
d2y

dx2
+ x2y =

∞∑
n=2

n(n − 1)anxn−2 +
∞∑

n=0

anxn+2

=
∑
n=2

n(n − 1)anxn−2 +
∞∑

n=4

an−4x
n−2

= 2 · 1 · a2 + 3 · 2a3x +
∞∑

n=4

{n(n − 1)an + an−4}xn−2.

Then by the identity theorem, a2 = 0 and a3 = 0, and the recursion formula

n(n − 1)an + an−4 = 0 for n ≥ 4,

thus

(n + 4)(n + 3)an+4 + an = 0 for n ≥ 0.

2) Clearly, a0 = 1 and a1 = 0. It follows from (1) that a2 = 0 and a3 = 0. Finally, we get from the
recursion formula,

(0 + 4)(0 + 3)a4 + a0 = 0 for n = 0,

so a4 = − 1
12

.

Summing up we have

a0 = 1, a1 = a2 = a3 = 0 and a4 = − 1
12

.
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3 An eigenvalue problem solved by the power series method

Example 3.1 One can sometimes also use the power series method in more complicated problems.
We shall here give one example of an eigenvalue problem, which can be solved by the power series
method. If one wants to know more about eigenvalue problems, the reader is referred to e.g. Calculus
4b.

Consider the eigenvalue problem

d4y

dx4
+ (λ − x)

d2y

dx2
− dy

dx
= 0, x ∈ [0, λ].

y(0) = y′(0) = y′′(λ) = y′′′(λ) = 0.

This is the model equation of the deviation from the vertical of a vertically thin column of length λ
under the influence of the weight of the column itself. We shall find the smallest eigenvalue λ.

1) Start by an inspection of the equation. Since

d

dx

{
(λ − x)

dy

dx

}
= (λ − x)

d2y

dx2
− dy

dx
,

we can also write the differential equation in the form

d4y

dx4
+

d

dx

{
(λ − x)

dy

dx

}
= 0.

This can immediately be integrated

d3y

dx3
+ (λ − x)

dy

dx
= c, c arbitrær.

2) Identification of c by the boundary value y′′′(λ) = 0 gives

c = y′′′(λ) + (λ − λ)y′(λ) = 0.

Hence, the problem is reduced to the simpler homogeneous equation

d3y

dx3
+ (λ − x)

dy

dx
= 0,

which is identified as a second order differential equation in
dy

dx
. If we therefore put z =

dy

dx
, then

d2z

dx2
+ (λ − x)z = 0,

where the boundary values for z are given by

z(0) = y′(0) = 0 and z′(λ) = y′′(λ) = 0.

Remark 3.1 We have already used the boundary value y′′′(λ) = z′′(λ) = 0 above, and we see
that it also follows from the equation. Furthermore, y(0) = 0 is not at all relevant for z = y ′.
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3) Change of variable. The factor λ− x is annoying, so we chance the variable to t = λ− x. If we
put

u(t) = z(x), i.e. u(λ − x) = z(x),

the equation is transferred into

d2u

dt2
+ tu(t) = 0 med u(λ) = 0 og u′(0) = 0.

4) We shall now for some time neglect the boundary condition u(λ) = 0, when we find a power series
solution of this equation. We shall of course later apply the condition u(λ) = 0. Since u′(0) = 0,
we have a1 = 0. By insertion of the formal series

u(t) =
∞∑

n=0

antn and
d2u

dt2
=

∞∑
n=2

n(n − 1)antn−2

An eigenvalue problem solved by the power series method
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into the differential equation we get

0 =
d2u

dt2
+ tu(t) =

∞∑
n=2

n(n − 1)antn−2 +
∞∑

n=0

antn−1 =
∞∑

n=0

(n + 2)(n + 1)an+2t
n +

∞∑
n=1

an−1t
n

= 2a2 +
∞∑

n=1

{(n + 2)(n + 1)an+2 + an−1}tn.

It follows from the identity theorem that a2 = 0 (we knew already that a1 = 0), and for n ∈ N

(the summation domain)

(n + 2)(n + 1)an+2 + an−1 = 0 for n ∈ N.

By n �→ n + 1 this is transformed into

(n + 3)(n + 2)an+3 + an = 0 for n ∈ N0.

Here we have a leap of 3 in the indices, hence, because a1 = 0 and a2 = 0, we conclude by induction
that

a3n+1 = 0 and a3n+2 = 0 for n ∈ N0.

We have now reduced the power series solution to

u(t) =
∞∑

n=0

a3nt3n =
∞∑

n=0

bnt3n,

where the recursion formula for a3n = bn is obtained by the change n �→ 3n, thus

(3n + 3)(3n + 2)a3n+3 + a3n = 0, n ∈ N0,

and hence

bn+1 = − 1
(3n + 3)(3n + 2)

bn, bn = a3n, n ∈ N0.

If b0 �= 0 and thus bn �= 0, we find the radius of convergence by an application of the criterion of
quotients∣∣∣∣an+1(t)

an(t)

∣∣∣∣ = |bn+1||t|3(n+1)

|bn||t|3n
=

|t|3
(3n + 3)(3n + 2)

→ 0 for n → ∞.

Hence, the series is convergent for every t ∈ R, and � = ∞.

Now we should in reality consider a boundary value problem, so a0 = b0 �= 0 are“free”. We
choose arbitrarily a0 = b0 = 1. Then by induction,

bn = a3n = (−1)n · 1
(3n)!

n−1∏
j=0

(3j + 1), n ∈ N.
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5) We have proved that

(43)
dy

dx
= z(x) = u(λ − x) =

∞∑
n=0

a3n(λ − x)3n, x ∈ R,

where we have found a3n in (4). This function cannot be expressed by elementary functions. We
can still perform termwise integration. Since y(0) = 0, we get by termwise integration and a
rearrangement that

y(x) = =
∞∑

n=0

a3n

∫ x

0

(λ − t)3ndt =
∞∑

n=0

a3n

[
− 1

3n + 1
(λ − t)3n+1

]x

0

=
∞∑

n=0

a3n

3n + 1
λ3n+1 −

∞∑
n=0

a3n

3n + 1
(λ − x)3n+1,

giving us the structure of the eigenfunctions, if only we can find the eigenvalues.
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6) It remains to find the smallest (positive) λ = λcrit, for which we have a proper solution, i.e. for
which a0 �= 0. Here we use the boundary condition y′(0) = 0, hence by (43),

y′(0) =
∞∑

n=0

a3nλ3n = 0 where a0 = 1.

This transcendent equation is solved approximately in the following way:

We put for convenience η = λ3, and find successively the smallest root of each of the polynomials

Pn(η) =
n∑

k=0

a3kηk, n ∈ N.

Since a3k has alternating sign, the possible real roots can only be positive. In the first polynomials
we may only get complex roots. However, if two successive polynomials Pn(η) and Pn+1(η) have
their (smallest) real roots ηn and ηn+1, then every successive polynomial Pn+m(η) will also have
a (smallest) real root ηn+m. Since a3n is alternating it is easily proved that ηn+m, m > 1, always
lies between ηn and ηn+1, so we obtain a convergent sequence of number. The following numerical
calculations show that the convergence is fairly fast.

7) Numerical calculations. No text needed.

n = 1 : P1(η) = 1 − 1
3 · 2η, η1 = 6 and λ1 = 3

√
6 = 1, 81712.

n = 2 : P2(η) = 1 − η

6

(
1 − η

6 · 5
)

, η2 = 8, 29180 and λ2 = 3
√

η2 = 2, 02403.

n = 3 : P3(η) = 1− η

6

(
1 − η

30

(
1 − η

9 · 8
))

, η3 = 7, 814712 and λ3 = 3
√

η3 = 1, 98444.

n = 4 : P4(η) = 1 − η

6

(
1 − η

30

(
1 − η

72

(
1 − η

12 · 11

)))
,

η4 = 7, 838213 and λ4 = 3
√

η4 = 1, 98643.

n=5 : P5(η)=1− η

6

(
1− η

30

(
1− η

72

(
1− η

132

(
1− η

15 · 14

))))
,

η5 = 7, 837325 and λ5 = 3
√

η5 = 1, 98635.

n=6: P6(η)=1− η

6

(
1− η

30

(
1− η

72

(
1− η

132

(
1− η

210

(
1− η

18·17

)))))
,

η6 = 7, 837348 and λ6 = 3
√

η6 = 1, 98635.

It follows that λ5 = λ6 = 1, 98635 is a correct estimate of λcrit with 5 decimals. This result is
obtained after only 6 iterations.
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